Đáp án:
$\begin{array}{l}
10)x - \sqrt {4{x^2} - 12x + 9} = 3\\
\Leftrightarrow x - 3 = \sqrt {{{\left( {2x - 3} \right)}^2}} \\
\Leftrightarrow x - 3 = \left| {2x - 3} \right|\left( {dkxd:x \ge 3} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x - 3 = 2x - 3 \Leftrightarrow x = 0\left( {ktm} \right)\\
x - 3 = - 2x + 3 \Leftrightarrow x = 2\left( {ktm} \right)
\end{array} \right.\\
Vậy\,x \in \emptyset \\
11)\sqrt {3 - 2\sqrt 2 } - \sqrt {{x^2} + 2x\sqrt 3 + 3} = 0\\
\Leftrightarrow \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - \sqrt {{{\left( {x + \sqrt 3 } \right)}^2}} = 0\\
\Leftrightarrow \left| {\sqrt 2 - 1} \right| = \left| {x + \sqrt 3 } \right|\\
\Leftrightarrow \sqrt 2 - 1 = \left| {x + \sqrt 3 } \right|\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt 2 - 1 = x + \sqrt 3 \Leftrightarrow x = \sqrt 2 - 1 - \sqrt 3 \\
\sqrt 2 - 1 = - x - \sqrt 3 \Leftrightarrow x = 1 - \sqrt 2 - \sqrt 3
\end{array} \right.\\
Vậy\,x = \sqrt 2 - \sqrt 3 - 1;x = 1 - \sqrt 2 - \sqrt 3 \\
12)\sqrt {5{x^2} - 2x\sqrt 5 + 1} = \sqrt {6 - 2\sqrt 5 } \\
\Leftrightarrow \sqrt {{{\left( {x\sqrt 5 - 1} \right)}^2}} = \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \\
\Leftrightarrow \left| {x\sqrt 5 - 1} \right| = \left| {\sqrt 5 - 1} \right|\\
\Leftrightarrow \left| {x\sqrt 5 - 1} \right| = \sqrt 5 - 1\\
\Leftrightarrow \left[ \begin{array}{l}
x\sqrt 5 - 1 = \sqrt 5 - 1 \Leftrightarrow x = 1\\
x\sqrt 5 - 1 = 1 - \sqrt 5 \Leftrightarrow x = \dfrac{{2\sqrt 5 - 5}}{5}
\end{array} \right.\\
Vậy\,x = 1;x = \dfrac{{2\sqrt 5 - 5}}{5}\\
14)\sqrt {7 - 2\sqrt {10} } - \sqrt {5x - 2x\sqrt {10} + 2} = 0\\
\Leftrightarrow \sqrt {{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}} - \sqrt {{{\left( {x\sqrt 5 - \sqrt 2 } \right)}^2}} = 0\\
\Leftrightarrow \sqrt 5 - \sqrt 2 = \left| {x\sqrt 5 - \sqrt 2 } \right|\\
\Leftrightarrow \left[ \begin{array}{l}
x\sqrt 5 - \sqrt 2 = \sqrt 5 - \sqrt 2 \Leftrightarrow x = 1\\
x\sqrt 5 - \sqrt 2 = \sqrt 2 - \sqrt 5 \Leftrightarrow x = \dfrac{{2\sqrt 5 - 5}}{5}
\end{array} \right.\\
Vậy\,x = 1;x = \dfrac{{2\sqrt 5 - 5}}{5}\\
15)\sqrt {11 + 6\sqrt 2 } = \sqrt {2{x^2} - 6x\sqrt 2 + 9} \\
\Leftrightarrow \sqrt {{{\left( {3 + \sqrt 2 } \right)}^2}} = \sqrt {{{\left( {x\sqrt 2 - 3} \right)}^2}} \\
\Leftrightarrow 3 + \sqrt 2 = \left| {x\sqrt 2 - 3} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
x\sqrt 2 - 3 = 3 + \sqrt 2 \Leftrightarrow x = 3\sqrt 2 + 1\\
x\sqrt 2 - 3 = - 3 - \sqrt 2 \Leftrightarrow x = - 1
\end{array} \right.\\
Vậy\,x = - 1;x = 3\sqrt 2 + 1
\end{array}$