Đáp án+giải thích các bước giải:
a)
$(\sqrt{75}+\sqrt{12}-\sqrt{5}).\sqrt{5}-2\sqrt{15}$
$=(\sqrt{5^2.3}+\sqrt{2^2}{3}-\sqrt{5}).\sqrt{5}-2\sqrt{15}$
$=(5\sqrt{3}+2\sqrt{3}-\sqrt{5}).\sqrt{5}-2\sqrt{15}$
$=5\sqrt{15}+2\sqrt{15}-5-2\sqrt{15}$
$=5\sqrt{15}-5$
b)
$(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}):\dfrac{a-\sqrt{a}+1}{a\sqrt{a}+1}$ (a>0)
$=(\dfrac{1}{\sqrt{a}(\sqrt{a}+1)}+\dfrac{1.\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}):\dfrac{a-\sqrt{a}+1}{a\sqrt{a}+1}$
$=\dfrac{1+\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}:\dfrac{a-\sqrt{a}+1}{(\sqrt{a}+1)(a-\sqrt{a}+1)}$
$=\dfrac{1+\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}.\dfrac{a\sqrt{a}+1}{\sqrt{a}+1)(a-\sqrt{a}+1)}$
$=\dfrac{(1+\sqrt{a})(\sqrt{a}+1)(a-\sqrt{a}+1)}{\sqrt{a}(\sqrt{a}+1)(\sqrt{a}+1)(a-\sqrt{a}+1)}$
$=\dfrac{1+\sqrt{a}}{\sqrt{a}}$