Đáp án:
Giải thích các bước giải:
`B=\frac{2(x+4)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}`
ĐK: `x \ge 0,x \ne 16`
`B=\frac{2(x+4)}{(\sqrt{x}+1)(\sqrt{x}-4)}+\frac{\sqrt{x}(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}-\frac{8(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)}`
`B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}`
`B=\frac{3x-12\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-4)}`
`B=\frac{3\sqrt{x}(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}`
`B=\frac{3\sqrt{x}}{\sqrt{x}+1}`