Câu `1:`
`a)`
`A = 2x^2 - 6x - 1`
`= 2 (x^2 - 3x + 9/4) - 11/2`
` = 2 (x - 3/2)^2 - 11/2`
`\forall x` ta có :
`(x-3/2)^2 \ge 0`
`=> 2 (x-3/2)^2 \ge 0`
`=> 2 (x-3/2)^2 - 11/2 \ge -11/2`
`=> A \ge -11/2`
Dấu `=` xảy ra `<=> x - 3/2 = 0`
`<=> x = 3/2`
Vậy `\text{Min}_A = -11/2 <=> x = 3/2`
`b)`
`B = x^2 - x - 2`
` = (x^2 - x+ 1/4) - 9/4`
`= (x - 1/2)^2 - 9/4`
`\forall x` ta có :
`(x-1/2)^2 \ge 0`
`=> (x-1/2)^2 - 9/4 \ge -9/4`
`=> B \ge -9/4`
Dấu `=` xảy ra `<=>x-1/2=0`
`<=>x=1/2`
Vậy `text{Min}_B = -9/4 <=> x = 1/2`
Câu `2:`
`a)`
`A = 3 - x^2 - 2x`
`= - (x^2 + 2x + 1) + 4`
`= - (x+1)^2 + 4`
`\forall x` ta có :
`(x+1)^2 \ge 0`
`=> - (x+1)^2 \le 0`
`=> - (x+1)^2 + 4 \le 4`
`=> A \le 4`
Dấu `=` xảy ra `<=>x+1=0`
`<=> x =-1`
Vậy `\text{Max}_A = 4 <=> x = -1`
`b)`
`B= 2x - 3x^2 - 4`
`= -3 (x^2 - 2/3x + 1/9) - 11/3`
`= -3 ( x - 1/3)^2 -11/3`
`\forall x` ta có :
`(x-1/3)^2 \ge 0`
`=> -3 (x-1/3)^2 \le 0`
`=> -3 (x-1/3)^2 - 11/3 \le -11/3`
`=> B \le -11/3`
Dấu `=` xảy ra `<=> x- 1/3=0`
`<=>x=1/3`
Vậy `\text{Max}_B = -11/3 <=> x = 1/3`