`sqrt(3)sin^2x+(1-sqrt3)sinxcosx-cos^2x=0`
`<=> -cos^2x + (1 - sqrt(3)) sinx cosx + sqrt(3) sin^2x = 0`
`<=> -(cosx - sinx) (cosx + sqrt(3) sinx) = 0`
`<=> [(cosx - sinx=0),(cosx + sqrt(3) sinx=0):}`
`<=> [(cosx = sinx),( sqrt(3) sinx=-cosx):}`
`<=> [(cotx= 1),( sqrt(3) tanx=-1):}`
`<=> [(x= pi/4+kpi),(tanx=-1/sqrt3):}(kinZZ)`
`<=> [(x= pi/4+kpi),(x=-pi/6+kpi):}(kinZZ)`
Vậy `S={pi/4+kpi; -pi/6+kpi | k inZZ}`