Đáp án:
`c. \frac{x+1}{3}>\frac{2x-1}{6}-2`
`<=> 2(x+1)>2x-1-12`
`<=> 2x+2>2x-1-12`
`<=> 2> -1-12`
`<=> 2> -13` (luôn đúng)
`=> x\inRR`
Vậy `S=RR`
`d. \frac{2x+1}{3}>\frac{2x-1}{6}-2`
`<=> 2(2x+1)>2x-1-12`
`<=> 4x+2>2x-1-12`
`<=> 2x> -15`
`<=> x> -15/2`
Vậy `S={x|x>-15/2}`
`e. \frac{x+5}{6}-\frac{2x+1}{3}\lefrac{x+3}{2}`
`<=> x+5-2(2x+1)\le3(x+3)`
`<=> x+5-4x-2\le3x+9`
`<=> -3x+3\le3x+9`
`<=> -6x\le6`
`<=> x\ge-1`
Vậy `S={x|x\ge-1}`
`f. \frac{5x+4}{6}-\frac{2x-1}{12}\ge4`
`<=> 2(5x+4)-2x+1\ge48`
`<=> 10x+8-2x+1\ge48`
`<=> 8x+9\ge48`
`<=> 8x\ge39`
`<=> x\ge39/8`
Vậy `S={x|x\ge39/8}`