Đáp án:
$\begin{array}{l}
B1)\\
5)\left( {x - 1} \right)\left( {x + 2} \right) - \left( {x + 5} \right)\left( {x - 2} \right)\\
= {x^2} + 2x - x - 2 - {x^2} + 2x - 5x + 10\\
= - 2x + 8\\
6)\\
\left( { - x + 5} \right)\left( {x - 3} \right) + \left( {2x - 1} \right)\left( {x - 3} \right)\\
= - {x^2} + 3x + 5x - 15 + 2{x^2} - 6x - x + 3\\
= {x^2} + x - 12\\
7)\\
- 5x\left( {x - 4} \right) + \left( {x - 3} \right)\left( {{x^2} - 7} \right)\\
= - 5{x^2} + 20x + {x^3} - 7x - 3{x^2} + 21\\
= {x^3} - 8{x^2} + 13x + 21\\
8)\\
4{x^2}\left( {x - 2{x^2} + 1} \right) - x\left( {3{x^2} - 2x - 5} \right)\\
= 4{x^3} - 8{x^4} + 4{x^2} - 3{x^3} + 2{x^2} + 5x\\
= - 8{x^4} + {x^3} + 6{x^2} + 5x\\
B2)\\
1)4x\left( {x - 5} \right) - \left( {x - 1} \right)\left( {4x - 3} \right) = 5\\
\Leftrightarrow 4{x^2} - 20x - 4{x^2} + 3x + 4x - 3 = 5\\
\Leftrightarrow - 13x = 8\\
\Leftrightarrow x = - \dfrac{8}{{13}}\\
Vậy\,x = - \dfrac{8}{{13}}\\
2)4x\left( {x - 5} \right) - 7x\left( {x - 4} \right) + 3{x^2} = 12\\
\Leftrightarrow 4{x^2} - 20x - 7{x^2} + 28x + 3{x^2} = 12\\
\Leftrightarrow 8x = 12\\
\Leftrightarrow x = \dfrac{3}{2}\\
Vậy\,x = \dfrac{3}{2}\\
3)\left( {x - 5} \right)\left( {x - 4} \right) - \left( {x + 1} \right)\left( {x - 2} \right) = 7\\
\Leftrightarrow {x^2} - 9x + 20 - \left( {{x^2} - x - 2} \right) = 7\\
\Leftrightarrow - 8x = 7 - 22\\
\Leftrightarrow - 8x = - 15\\
\Leftrightarrow x = \dfrac{{15}}{8}\\
Vậy\,x = \dfrac{{15}}{8}\\
4)\left( {x - 5} \right)\left( {x - 4} \right) - \left( {x - 1} \right)\left( {x + 3} \right) = - 2x\\
\Leftrightarrow {x^2} - 9x + 20 - {x^2} - 3x + x + 3 + 2x = 0\\
\Leftrightarrow - 9x = - 23\\
\Leftrightarrow x = \dfrac{{23}}{9}\\
Vậy\,x = \dfrac{{23}}{9}
\end{array}$