\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }}\)A.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = \dfrac{2}{3}\).B.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = \pm\infty\).C.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = 3\), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = - 3\).D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = \dfrac{2}{3}\), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {3x - 1} \right)\sqrt {{x^6} + x + 1} }}{{\sqrt {{x^8} - x + 2} }} = - \infty\).
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}}\)A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \pm \infty \).B.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \pm 1\) .C.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = - \infty \).D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} \) không tồn tại. \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = +\infty \).
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}}\)A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{2}\)B.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{2}\), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = - \infty\).C.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{2}\), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = - 1\).D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = 1\), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x\sqrt {{x^2} + x} - \sqrt {9{x^2} + 1} }}{{\left( {2x + 1} \right)\left( {x - 2} \right)}} = - 1\).
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}}\)A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \dfrac{1}{9}\) .B.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = + \infty \).C.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}}\) không tồn tại. \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \dfrac{1}{9}\) .D.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \mp \infty \).
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}}\)A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = 1 \),B.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = + \infty \), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - \infty \)C.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - \infty \),D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = + 1 \), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - 1 \)
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}}\)A.\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}} = -\infty\).B.\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}} = +\infty\).C.\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}} = 0\).D.\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}} = \dfrac{1}{4}\).
Thằn lằn bóng đuôi dài thường sống ởA.dưới nước.B.những chỗ ẩm ướt.C.những nơi khô ráoD.trên không
Màng nhĩ của thằn lằn nằm trong một hốc nhỏ bên đầu có ý nghĩaA.Nghe tốt hơnB.Bảo vệ màng nhĩ và hướng các dao động âm thanh vào màng nhĩ.C.giúp chúng giữ thăng bằngD.Cả 3 phương án trên
Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\left( {\dfrac{{{x^2} + 1}}{x}} \right)^2}\) là hàm số nào trong các hàm số sau:A.\(F\left( x \right) = \dfrac{{{x^3}}}{3} - \dfrac{1}{x} + 2x + C\)B.\(F\left( x \right) = \dfrac{{{x^3}}}{3} + \dfrac{1}{x} + 2x + C\)C.\(F\left( x \right) = \dfrac{{\dfrac{{{x^3}}}{3} + x}}{{\dfrac{{{x^2}}}{2}}} + C\)D.\(F\left( x \right) = {\left( {\dfrac{{\dfrac{{{x^3}}}{3} + x}}{{\dfrac{{{x^2}}}{2}}}} \right)^3} + C\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến