Cho hàm số \(y=\frac{x-2}{x+1}\) có đồ thị \(\left( C \right).\) Gọi \(I\) là giao điểm của hai tiệm cận của \(\left( C \right).\) Xét tam giác đều \(ABI\) có hai đỉnh \(A,\ B\) thuộc \(\left( C \right),\) đoạn thẳng \(AB\) có độ dài bằng:
A.\(2\sqrt{3}\)
B.\(2\sqrt{2}\)
C. \(\sqrt{3}\)
D. \(\sqrt{6}\)