Cho số phức \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(\dfrac{{\left| {z - 3 + 4i} \right| + 1}}{{3\left| {z - 3 + 4i} \right| - 3}} = \dfrac{1}{2}\) và môđun \(\left| z \right|\) lớn nhất. Tính tổng \(S = a + b\).
A. \(S = 2\).
B.\(S = - 2\).
C.\(S = - 1\).
D.\(S = 1\).