Cho hàm số \(y = - {x^3} + 4{x^2} + 1\) có đồ thị là \(\left( C \right)\) và điểm \(M\left( {m;1} \right)\). Gọi \(S\) là tập hợp tất cả các giá trị thực của \(m\) để qua \(M\) kẻ được đúng 2 tiếp tuyến đến đồ thị \(\left( C \right)\). Tổng giá trị tất cả các phần tử của \(S\) bằng:
A.\(5\)
B.\(\dfrac{{40}}{9}\)
C.\(\dfrac{{16}}{9}\)
D.\(\dfrac{{20}}{3}\)