\(x^4-4x^3-2x^2+12x+5=0\)
Lời giải:
Ta có:
\(\Leftrightarrow (x^4-4x^3+4x^2)-6x^2+12x+5=0\)
\(\Leftrightarrow (x^2-2x)^2-6(x^2-2x)+5=0\)
Đặt $x^2-2x=a$. Khi đó: \(a^2-6a+5=0\)
\(\Leftrightarrow (a-1)(a-5)=0\Rightarrow \left[\begin{matrix} a=1\\ a=5\end{matrix}\right.\)
Nếu $a=1$ thì $x^2-2x=1$
\(\Leftrightarrow x^2-2x-1=0\Rightarrow x=1\pm \sqrt{2}\)
Nếu $a=5$ thì $x^2-2x=5$
\(\Leftrightarrow x^2-2x-5=0\Rightarrow x=1\pm \sqrt{6}\)
Cho A (2;3) , B (0;2) . Điểm M trên trục hoành sao cho A,M,B thẳng hàng là :
A (-4;0)
B.(4:0)
C.(5;0)
D.(-3;0)
Giúp mình với nhé !!!
Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko
Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)
=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Áp dụng BĐT Cauchy ta có
\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)
Có một cuộc thi chạy, Thầy Thuậnđang chạy trên đường thẳng d có pt tham số là x=1-t, y=-2+t
Cô Lý đến cổ vũ cho thầy thuận đứng ở vị trí L(1;-4).
Hỏi thầy Thuận chạy đến vị trí nào để ngắm Cô Lý rõ nhất
bạn nào tl giúp mình vs, khó quá
Giải hệ PT: \(\left\{{}\begin{matrix}xy+45y=4x^2\\y^2+95y+6=7x^2+5x\end{matrix}\right.\)
Chứng minh với x,y là 2 số không âm tùy ý, ta luôn có: \(3x^3+17y^3\ge18xy^2\)
Xài bđt Cauchy nha.
Tìm gtln của (x + z)(y + t) biết x2 + y2 + 2z2 + 2t2 = 1
y=-x2+4x-3
lập bản biến thiên và vễ đồ thị hầm số
Cho x,y,z >0 và xy\(\ge\)12 ,yz\(\ge8\) CMR:
(x+y+z) +2(\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\)) +\(\dfrac{8}{xyz}\) \(\ge\dfrac{121}{12}\)
Giải giúp mình với !!!
Tìm số abc biết: 1abc = abc × 9
cho a ≥ 9 b≥4 c≥1 cmr:-.
\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến