Điều kiện xác định : \(-1\le x\le1\)
Đặt \(y=\sqrt{1+x},t=\sqrt{1-x}\) , (\(y,t\ge0\)
Ta có hpt: \(\begin{cases}4y-2t=yt+3\left(y^2-1\right)+1\\y^2+t^2=2\end{cases}\)
Xét pt đầu : \(4y-2t-yt-3y^2+2=0\)
thay \(2=y^2+t^2\) vào pt trên được ;
\(4y-2t-yt-2y^2+t^2=0\) \(\Leftrightarrow\left(t-2y\right)\left(t+y-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2y\\t+y=2\end{array}\right.\)
TH1. Nếu t = 2y ta có pt : \(\sqrt{1-x}=2\sqrt{1+x}\Leftrightarrow1-x=4\left(1+x\right)\Leftrightarrow x=-\frac{3}{5}\)(tmđk)
TH2. Nếu t + y = 2 ta có pt : \(\sqrt{1+x}+\sqrt{1-x}=2\)
Lại có theo bđt Bunhiacopxki , ta có : \(\left(1.\sqrt{1+x}+1.\sqrt{1-x}\right)^2\le\left(1^2+1^2\right)\left(1+x+1-x\right)=4\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}\le2\)
Dấu "=" xảy ra khi \(\begin{cases}-1\le x\le1\\\sqrt{1+x}=\sqrt{1-x}\end{cases}\) \(\Leftrightarrow x=0\) (tmđk)
Vậy tập nghiệm của pt : \(S=\left\{-\frac{3}{5};0\right\}\)