Giải thích các bước giải:
a.Ta có : $DF//AM$
$\rightarrow \dfrac{DF}{AM}=\dfrac{DC}{MC}$
Mà $DE//AM\rightarrow \dfrac{DE}{AM}=\dfrac{BD}{BM}$
$\rightarrow \dfrac{DF}{AM}+\dfrac{DE}{AM}=\dfrac{DC}{MC}+\dfrac{BD}{BM}=\dfrac{DC}{MC}+\dfrac{BD}{MC}=\dfrac{BD+DC}{CM}=\dfrac{BC}{CM}=2$
$\rightarrow DE+DF=2AM$
b.Ta có :
$DE+DF=2AM\rightarrow DE+EN+DF-EN=2AM\rightarrow DN+DF-EN=2AM\rightarrow DF-EN=AM=DF-FN\rightarrow EN=FN$
$\rightarrow N$ là trung điểm EF
c.Ta có :
$(DM+MC)^2\ge 4DM.MC $
$\rightarrow(DM+MC)^4\ge 16DM^2.MC^2 $
$\rightarrow DC^4\ge 16DM^2.MC^2$
$\rightarrow (\dfrac{DC}{DM})^2.(\dfrac{DC}{MC})^2\ge 16$
$\rightarrow (\dfrac{DC}{NA})^2.(\dfrac{DC}{MC})^2\ge 16$
$\rightarrow \dfrac{S_{FDC}}{S_{FNA}}.\dfrac{S_{FDC}}{S_{AMC}}\ge 16$
$\rightarrow S^2_{FDC}\ge 16S_{AMC}.S_{FNA}$