gọi x1, x2 là nghiệm của pt \(x^2-x-1=0\)
đặt \(S_n=x^n_1+x^n_2\left(n=1;2;3...\right)\)
a) tính \(S_1,S_2\)
b) c/m rằng : \(S_{n+2}=S_{n+1}+S_n\)
c) tính \(S_6\)
a) Ta có: \(S_1=x_1+x_2=1\)
\(S_2=x^2_1+x^2_2=S^2-2P=1+2=3\)
b)Ta có: \(\begin{cases}x^2_1-x_1-1=0\\x^2_2-x_2-1=0\end{cases}\)\(\Rightarrow\)\(\begin{cases}x^2_1=x_1+1\\x^2_2=x_2+1\end{cases}\)\(\Rightarrow\)\(\begin{cases}x^{n+2}_1=x^{n+1}_1+x^n_1\\x^{n+2}_2=x^{n+1}_2+x^n_2\end{cases}\)
\(\Rightarrow x^{n+2}_1+x^{n+2}_2=\)\(\left(x^{n+1}_1+x^{n+1}_2\right)+\left(x^n_1+x^n_2\right)\)
\(\Rightarrow S_{n+2}=S_{n+1}+S_n\)
cho a,b,c,là số dương thoả a+b+c=1 chứng minh (1/a+b)+(1/b+c)+(1/c+a)>=9/2
Lập bảng xét dấu
\(f\left(x\right)=x^2+6x+5\)
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh bất đẳng thức (b-c)2 < a2;
b) Từ đó suy ra bất đẳng thức a2 + b2 + c2 < 2(ab + bc +ca).
Chứng minh bất đẳng thức :
x3 + y3 ≥ x2y + xy2, ∀x ≥ 0, ∀y ≥ 0.
lập phương trình của (P) : ax2 + bx + c (a khác 0 ) , biết : a) (P) có đỉnh I (1 , 2) và qua M ( -1 , -2 ) ; b) (P) có trục đối xứng x = 2 và đi qua A (1 , -6) , B(4 , 3)
Giải dùm phương trình này vs ạ x(-2x+1)=-1
x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.
giải và biện luận bất phương trình : 2(m+1)x <= (m+1)2(x-1)
Giải hệ 2 phương trình
\(\frac{x^2\left(x^2+2\right)+1}{y^2}+\left(x+y\right)^2=10\)
\(\left(x^2+1\right)+y\left(x+y\right)=4y\)
giải và biện luận các phương trình sau: a) (2x+m-4)(2mx-x+m) =0 ; b) (m+1)x +m-2/x+3 =m
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến