lập phương trình của (P) : ax2 + bx + c (a khác 0 ) , biết : a) (P) có đỉnh I (1 , 2) và qua M ( -1 , -2 ) ; b) (P) có trục đối xứng x = 2 và đi qua A (1 , -6) , B(4 , 3)
(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$
a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):--x2+2x+1
b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3
Giải dùm phương trình này vs ạ x(-2x+1)=-1
Chứng minh bất đẳng thức :
x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.
giải và biện luận bất phương trình : 2(m+1)x <= (m+1)2(x-1)
Giải hệ 2 phương trình
\(\frac{x^2\left(x^2+2\right)+1}{y^2}+\left(x+y\right)^2=10\)
\(\left(x^2+1\right)+y\left(x+y\right)=4y\)
giải và biện luận các phương trình sau: a) (2x+m-4)(2mx-x+m) =0 ; b) (m+1)x +m-2/x+3 =m
giải pt
\(\frac{1}{\sqrt{1-x^2}}=\sqrt{2}+\frac{1}{x}\)
Giải các bất phương trình sau
a) \(\frac{3x+1}{2}-\frac{x-2}{3}<\frac{1-2x}{4}\)
b) )2x - 1)(x + 3) - 3x + 1 ≤ (x - 1)(x + 3) + x2 – 5.
Trong mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
cho hàm số : y = x2 - (a + 1)x + a2 - 2a + 7 có đồ thị là parabol ( P ) : a) tìm a để ( P ) đi qua điểm M ( 1 , 6 ) . Vẽ ( P ) đó với a vừa tìm được ; b) tìm a để ( P ) cắt Ox tại A, B mà xA2 + xB2 = 22
giải phương trình :
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến