Lập bảng xét dấu :
\(f\left(x\right)=\frac{x^2-3x+2}{-x^2+x+12^{ }}\)
Đặt TT: = \(x^2+3x+2;MT:=-x^2+x+12\)
Lập bảng xét dấu TT và MT trên tập xác đinh D=R/\(\left\{-3;4\right\}\)
Từ đó suy ra dấu của f(x)
Từ bảng xét dấu ta được
\(T\left(f\left(x\right)=0\right)=\left\{1;2\right\}\) ; \(T\left(f\left(x\right)e0\right)=R\) / \(\left\{-3;1;2;4\right\}\)
\(T\left(f\left(x\right)>0\right)=\left(3;1\right)\cup\left(2;4\right)\) ; \(T\left(f\left(x\right)\ge0\right)=\left(-3;1\right)\cup\left(2;4\right)\)
\(T\left(f\left(x\right)<0\right)=\left(-\infty;-3\right)\cup\left(1;2\right)\cup\left(4;+\infty\right)\)
\(T\left(f\left(x\right)\le0\right)=\left(-\infty;-3\right)\cup\left[1;2\right]\cup\left(4;+\infty\right)\)
Giải giúp mk vs
\(\frac{1}{\sqrt{1-x^2}}=\sqrt{2}+\frac{1}{x}\)
Giải bất phương trình :
\(\sqrt{x^2-2x}\) \(\ge x+2\)
\(\sqrt{\left(x+1\right)\left(4-x\right)}>x-2\)
Trong mặt phẳng Oxy cho 2 đường thẳng d1: 2x - y + 5=0, d2: 3x + 6y - 7=0. Lập phương trình đường thẳng đi qua P (2; -1) sao cho đường thẳng đó cắt d1, d2 tạo ra một tam giác cân có đỉnh là giao điểm của d1, d2
chứng minh rằng với mọi số thực a . b . c ta có : ( a + b + c )2 <= 3( a2 + b2 + c2 )
Giải pt: \(\sqrt[3]{x^2+26}+\sqrt{x+3}+3\sqrt{x}=8\)
Cho hàm số bậc 2 :
y = ax2 + bx + c
Xác định a, b, c, biết parabol đi qua điểm A(8; 0) và có đỉnh I(6; – 12).
\(\left|3x-5\right|\ge x^2-2x-3\)
Một người đi xe đạp từ đỉnh A- đỉnh B cách nhau 50km.Sau đó 1h30p 1 xe máy cũng đi từ A-B sớm hơn 1h.Tính vận tốc mỗi xe biết răng vận tốc xe máy gấp 2 lần vận tốc xe đạp
Giải tuyển hỗn hợp sau :
\(\begin{cases}x^2-3x+2=0\\x^2-100=0\\2x^2-x-1\le0\\x^2-6x-55\ge0\end{cases}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến