tìm các giá trị a sao cho phương trình (a - 1)x4 - ax2 + a2 -1 = 0 có 3 nghiệm phân biệt .
ĐK cần:
Đặt t=x^2>0.Phương trình trở thành (a-1)t^2-at+a^2-1=o
Gia sử phương trình có 3 nghiệm phân biệt khi đó t không thể nhận đúng 1 hoặc 2 nghiệm dương hoặc vô nghiệm dương .Do đó phải có 1 nghiemj t=0
Vậy khi t=0 phương tình phá đc thỏa mãn tức là:a^2-1=0\(\Leftrightarrow\)a=1 hoặc a =-1
ĐK đủ:
thế a=1 phương trình tro thanh :-x^2=0 chí có đúng 1 nghiệm \(\Rightarrow\)loại
thế a=-1 phương trình tro thanh :-2x^4+x^2=0
\(\Leftrightarrow\)x^2.(1-2x^2)=0
\(\Rightarrow\)x=0,\(\frac{1}{\sqrt{2}}\),\(\frac{-1}{\sqrt{2}}\),
kết luận a=-1 thì pt có đúng 3 nghiệm phân biệt
chứng minh rằng , nếu a , b , c là độ dài các cạnh của một tam giác thì : a2 + b2 + c2 < 2( ab + bc + ca )
Cho hàm số bậc 2 :y = f(x) = ax2 + 2x – 7 (P).
Tìm a để đồ thị (P) đi qua A(1, -2)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = ( x +3 )( 5 - x ) với -3<= x <=5
Cho hàm số bậc 2 :y = f(x) = ax2 + bx + c (P).
Tìm a, b, c để đồ thị (P) đi qua A(-1, 4) và có đỉnh S(-2, -1).
chứng minh rằng nếu a , b . c là 3 số dương thì : \(\frac{a^4}{b}\) + \(\frac{b^4}{c}\) + \(\frac{c^4}{a}\) >= 3abc
Lập bảng xét dấu :
\(f\left(x\right)=-5x^2+2x+3\)
Trong hàm số bậc 2 sau , hãy xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của mỗi parabol.
y = x2 – 3x + 2;
cho 2 đường thẳng (d1) : x+2y-3=0 và (d2) : 3x-y+2=0 . Viết phương trình đường thẳng (d) đi qua điểm P(3;1) và cắt (d1) , (d2) lần lượt ở A , B sao cho (d) tạo với (d1) và (d2) một tam giác cân có cạnh đáy là AB .
Giải tuyển các bất phương trình :
\(\begin{cases}x^2+x-20\le0\\x^2+7\le0\\x^2-9x+20\le0\end{cases}\)
Cho hàm số bậc 2 :
y = – 2x2 + 4x – 3
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của mỗi parabol
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến