Từ giả thiết suy ra \(\overrightarrow{AB}=\left(-2;2\right);\overrightarrow{BC}=\left(4;-3\right)\)
Gọi H(x;y) là trực tâm của tam giác ABC thế thì \(\overrightarrow{CH}=\left(x-2;y\right),\overrightarrow{AH}=\left(x;y-1\right)\)
Ta có H là trực tâm của tam giac ABC khi và chỉ khi
\(\begin{cases}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}4x-3\left(y-1\right)=0\\-2\left(x-2\right)+2y=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-9\\y=-11\end{cases}\)
Vậy trực tâm của tam giác ABC là H(-9;-11)
Để tìm tọa độ của tâm I đường tròn ngoại tiếp tam giác ABC ta có thể sử dụng công thức khoảng cách IA=IB=IC hoặc sử dụng đẳng thức Vecto \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IH}\)
Hoặc cũng có thể làm như sau :
Gọi M và N theo thứ tự là trung điểm của AB và BC. Khi đó M(-1;2) và \(N\left(0;\frac{3}{2}\right)\)
Gọi I(x;y) là tâm đường tròn ngoại tiếp của tam giác. Khi đó :
\(\begin{cases}\overrightarrow{IM}.\overrightarrow{AB}=0\\\overrightarrow{IN}.\overrightarrow{BC}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}-2\left(-1-x\right)+2\left(2-y\right)=0\\4\left(-x\right)-3\left(\frac{3}{2}-y\right)=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\frac{9}{2}\\y=\frac{15}{2}\end{cases}\)
Vậy tâm đường tròn ngoại tiếp của tam giác ABC là \(I\left(\frac{9}{2};\frac{15}{2}\right)\)