Đường thẳng \(d_2\) có phương trình tổng quát là :
\(3x+4y-2=0\)
Theo định lý, đường phân giác các góc tạo bởi \(d_1,d_2\) có phương trình dạng :
\(\frac{4x+3y-5}{\sqrt{4^2+3^2}}=\pm\frac{3x+4y-5}{\sqrt{3^2+4^2}}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+y-1=0\left(l_1\right)\\x-y-3=0\left(l_2\right)\end{array}\right.\)
Gọi \(\alpha_k\) là góc giữa \(l_k\) và \(d_1\), \(k=1,2\) khi đó
\(\cos\alpha_1=\frac{\left|4.1+3.1\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+1^2\right)}}=\frac{7}{5\sqrt{2}}\)
và
\(\cos\alpha_2=\frac{\left|4.1+3.\left(-1\right)\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+\left(-1^2\right)\right)}}=\frac{1}{5\sqrt{2}}\)
Suy ra \(\cos\alpha_1>\cos\alpha_2\) . Từ đó hàm số \(y=\cos x\) nghịch biến trên \(\left[0;\frac{\pi}{2}\right]\) nên \(0< \alpha_1< \alpha_2< \frac{\pi}{2}\)
Suy ra \(l_1\) là phân giác góc nhọn tạo bởi hai đường thẳng \(d_1;d_2\) đã cho