Giá trị lớn nhất của biểu thức B = xyz (x+y)(y+z)(z+x) với \(x;y;z\ge0\); x+y+z=1 là K .Khi đó 93.k =?
(Mọi người ơi ! Giải hộ tớ bài này với ! )
Biến đổi:
\(8B=8xyz[(xy+yz+xz)(x+y+z)-xyz]=8xyz(xy+yz+xz-xyz)\)
Áp dụng BĐT Am-Gm dạng \(ab\leq\left(\frac{a+b}{2}\right)^2\Rightarrow 8B\leq\left(\frac{xy+yz+xz+7xyz}{2}\right)^2\)
Bằng Am-Gm dễ dàng chứng minh \(xy+yz+xz\leq\frac{(x+y+z)^2}{3}=\frac{1}{3};xyz\leq\frac{1}{27}\)
Do đó: \(8B\leq\frac{64}{729}\Rightarrow B_{max}=\frac{8}{729}\) \(\Rightarrow 9^3k=\frac{8}{729}.9^3=8\)
Bài 1.48 (SBT trang 45)
Cho hình bình hành ABCD tâm O. Gọi M và N lần lượt là trung điểm của AD và BC. Dựa vào các điểm A, B, C, D, O, M, N đã cho, hãy :
a) Kể tên hai vectơ cùng phương với \(\overrightarrow{AB}\), hai vectơ cùng hướng với \(\overrightarrow{AB}\), hai vectơ ngược hướng với \(\overrightarrow{AB}\) (các vectơ kể ra này đều khác \(\overrightarrow{0}\)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(-3;3), chân đường cao kẻ từ đỉnh A là điểm K(-1;1). Tìm tọa độ các đỉnh A, B, C
một ô tô đi từ tỉnh a lúc 7 giờ 15 phút và đến tỉnh b lúc 9 giờ 51 phút với vận tốc 45km/giớ . Đến tỉnh b nghỉ 35 phút để lấy hàng rồi quay về a .Hỏi ô tô về a lúc mấy giờ biết vận tốc khi quay về a la 52 km/giờ .
( GIẢI HẲN RA NHÉ !!! )
a.√(4x +1) - √(3x - 2) =(x + 3)/5
b.x2+ x - 1 = (x + 2)√(x2 - 2x + 2)
Tìm tập nghiệm |x+3| > 3
Bài 3.10 (SBT trang 144)
Tìm góc giữa hai đường thẳng :
\(d_1:x+2y+4=0\) và \(d_2:2x-y+6=0\)
Cho điểm M(1;1) và hai đường thẳng \(\Delta_1,\Delta_2\) lần lượt có phương trình :
\(3x+4y-5=0;4x-3y+4=0\)
Viết phương trình đường thẳng d đi qua M và tạo với \(\Delta_1,\Delta_2\) một tam giác cân
tìm độ dài các cạnh của một tam giác vuông, biết cạnh dài nhất hơn cạnh thứ 2 là 2m, cạnh thứ 2 dài hơn cạnh ngắn nhất là 23m?
Tam giác ABC vuông tại A, AB=AC=2. Độ dài vecto \(4\overrightarrow{AB}-\overrightarrow{AC}\)
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến