Cho \(\Delta ABC\) nhọn \(\left( {AB > AC} \right)\) nội tiếp đường tròn tâm \(O.\) Các đường cao \(BE,\,\,CE\) cắt nhau tại \(H\,\,\left( {D \in AC,\,\,E \in AB} \right).\) Gọi \(M,\,\,N\) lân lượt là trung điểm của các cạnh \(AB\) và \(AC.\)
a) Chứng minh các tứ giác \(BCDE\) và \(AMON\) nội tiếp.
b) Chứng minh \(AE.AM = AD.AN.\)
c) Gọi \(K\) là giao điểm của\(ED\) và \(MN,\,\,F\) là giao điểm của \(AO\) và \(MN,\,\,I\) là giao điểm của \(ED\) và \(AH.\) Chứng minh \(F\) là trực tâm \(\Delta KAI.\)
A.
B.
C.
D.

Các câu hỏi liên quan