\(C\in d_1\) nên \(C\left(x_1;\dfrac{17-4x_1}{5}\right)\); \(D\in d_2\) nên \(D\left(x_2;\dfrac{18-x_2}{2}\right)\). Tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{CD}\). \(\overrightarrow{AB}\left(2;-6\right)\), \(\overrightarrow{CD}\left(x_2-x_1;\dfrac{40+8x_1-5x_2}{10}\right)\). Suy ra \(\left\{{}\begin{matrix}x_2-x_1=2\\\dfrac{-56+8x_1-5x_2}{10}=-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2-x_1=2\\8x_1-5x_2=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\). Vậy \(C\left(2;\dfrac{9}{2}\right);D\left(4;7\right)\). \(AC=\left|\overrightarrow{AC}\right|=\sqrt{\left(2-1\right)^2+\left(\dfrac{9}{2}-2\right)^2}=\dfrac{\sqrt{29}}{2}\).