gpt a/ \(\left(5x+1\right)\sqrt{2x+1}-\left(7x+3\right)\sqrt{x}=1\)
b/ \(2\sqrt{1-x}-\sqrt{1+x}+3\sqrt{1-x^2}=3-x\)
a)\(\left(5x+1\right)\sqrt{2x+1}-\left(7x+3\right)\sqrt{x}=1\)
ĐK:\(x\ge 0\)
\(\Leftrightarrow\left(5x+1\right)\sqrt{2x+1}-\left(\dfrac{31}{2}x+1\right)-\left(\left(7x+3\right)\sqrt{x}-\dfrac{31}{2}x\right)=0\)
\(\Leftrightarrow\dfrac{\left(5x+1\right)^2\left(2x+1\right)-\left(\dfrac{31}{2}x+1\right)^2}{\left(5x+1\right)\sqrt{2x+1}+\dfrac{31}{2}x-1}-\dfrac{x\left(7x+3\right)^2-\left(\dfrac{31}{2}x\right)^2}{\left(7x+3\right)\sqrt{x}+\dfrac{31}{2}x}=0\)
\(\Leftrightarrow\dfrac{\dfrac{1}{4}x\left(200x+19\right)\left(x-4\right)}{\left(5x+1\right)\sqrt{2x+1}+\dfrac{31}{2}x-1}-\dfrac{\dfrac{1}{4}x\left(x-4\right)\left(196x-9\right)}{\left(7x+3\right)\sqrt{x}+\dfrac{31}{2}x}=0\)
\(\Leftrightarrow\dfrac{1}{4}x\left(x-4\right)\left(\dfrac{200x+19}{\left(5x+1\right)\sqrt{2x+1}+\dfrac{31}{2}x-1}-\dfrac{196x-9}{\left(7x+3\right)\sqrt{x}+\dfrac{31}{2}x}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Nghe t đi phần nào khó cho qua :)) b tương tự
Cho tam giác ABCD cân tại A, biết góc \(\)B=\(30^0\) .Góc giữa hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) bằng:
A \(90^0\)
B.\(120^0\)
C.\(150^o\)
D.\(180^o\)
Cho a,b,c là độ dài 3 cạnh tam giác. Tìm GTNN của
P=\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
Cho a,b,c dương.CMR
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
Cho a,b,c dương thỏa mãn a+b+c=3
Tìm GTNN của P=\(\sqrt{\dfrac{a+b}{2ab}}+\sqrt{\dfrac{b+c}{2bc}}+\sqrt{\dfrac{c+a}{2ca}}\)
Cho a,b,c dương thỏa mãn abc=1
Tìm GTNN của P=\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\)
Cho a,b,c dương. CMR \(1+\dfrac{3}{ab+bc+ca}\ge\dfrac{6}{a+b+c}\)
Cho a,b,c dương thỏa mãn a+b+c=1
Tìm GTLN của P=\(\dfrac{ab}{\sqrt{c+ab}}+\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}\)
CMR: 3x^2 + 4y^2 + 4x + 2 >= 4xy
Cho em hỏi bài này ạ!!!
7x÷73=49
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến