Chứng minh :sin4x - cos44x = 1 - \(\dfrac{ }{ }\)sin2x
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=\left(sin^2x-cos^2x\right)\cdot1\)\(=1-cos^2x-cos^2x=1-2cos^2x\)
ta có công thức nhân đôi:
2 cos2x - 1 = 1 - 2 sin2x
<=> 2 cos2x = 2 - 2sin2x
=> sin4x - cos4x = 1- 2cos2x = 1- 2 + 2sin2x = -1 + 2 sin2x
???
mình nghĩ là sai đề!
in4x - cos4x = 1- 2cos2x = -1 + 2 sin2x
1^2-2^2+3^2-4^2+...+99^2-100^2
Cho a,b,c dương. CMR
\(\dfrac{a^6}{b^3}+\dfrac{b^6}{c^3}+\dfrac{c^6}{a^3}\ge\dfrac{a^4}{c}+\dfrac{b^4}{a}+\dfrac{c^4}{b}\)
gpt a/ \(\left(5x+1\right)\sqrt{2x+1}-\left(7x+3\right)\sqrt{x}=1\)
b/ \(2\sqrt{1-x}-\sqrt{1+x}+3\sqrt{1-x^2}=3-x\)
Cho tam giác ABCD cân tại A, biết góc \(\)B=\(30^0\) .Góc giữa hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) bằng:
A \(90^0\)
B.\(120^0\)
C.\(150^o\)
D.\(180^o\)
Cho a,b,c là độ dài 3 cạnh tam giác. Tìm GTNN của
P=\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
Cho a,b,c dương.CMR
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
Cho a,b,c dương thỏa mãn a+b+c=3
Tìm GTNN của P=\(\sqrt{\dfrac{a+b}{2ab}}+\sqrt{\dfrac{b+c}{2bc}}+\sqrt{\dfrac{c+a}{2ca}}\)
Cho a,b,c dương thỏa mãn abc=1
Tìm GTNN của P=\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\)
Cho a,b,c dương. CMR \(1+\dfrac{3}{ab+bc+ca}\ge\dfrac{6}{a+b+c}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến