Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{x}^{2}}\left( x+1 \right)\left( {{x}^{2}}+2mx+5 \right).\) Có tất cả bao nhiêu giá trị nguyên của \(m\) để hàm số \(y=f\left( x \right)\) có đúng 1 điểm cực trị.
A.7
B.0
C.6
D.5

Các câu hỏi liên quan