\(\left(3a-1\right)^2=9a^2-6a+1\)
\(\left(a-2\right)^2=a^2-4a+4\)
\(\left(1-5a\right)^2=1-10a+25a^2\)
\(\left(3a-2b\right)^2=9a^2-12ab+4a^2\)
\(\left(4-3a\right)^2=16-24a+9a^2\)
\(\left(5a-4b\right)^2=25a^2-40ab+16b^2\)
\(\left(5a-3b\right)\left(5a+3b\right)=25a^2-9b^2\)
\(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(5x^2-2\right)\left(5x^2+2\right)=25x^4-4\)
\(\left(2a+\dfrac{1}{2}\right)\left(2a-\dfrac{1}{2}\right)=4a^2-\dfrac{1}{4}\)
\(\left(3x^2-y\right)\left(3x^2+y\right)=9x^4-y^2\)
\(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)=\dfrac{1}{4}x^2-1\)
\(\left(\dfrac{3}{4}x+2\right)\left(\dfrac{3}{4}x-2\right)=\dfrac{9}{16}x^2-4\)
\(\left(5x-\dfrac{3}{2}\right)\left(5x+\dfrac{3}{2}\right)=25x^2-\dfrac{9}{4}\)
\(\left(2a^2-7\right)\left(2a^2+7\right)=4a^2-49\)