Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)
\(\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}\)
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}\)
\(\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}\)
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x+1}{x-2}\right)^{2x-1}\)
\(\lim\limits_{x\rightarrow e}\frac{\ln x-1}{x-e}\)
tính Lim(x-->0)\(\frac{1}{\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{x+1}+1}}\)
Cho \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\). Chứng minh hệ thức : \(y+xy'+x^2y"=0\)
Cho \(y=x\sin x\). Chứng minh hệ thức :
\(xy=2\left(y'-\sin x\right)+xy"=0\)
tìm m để y=x^3-(m+1)x^2+(m-1)x+1 cắt Ox tại A(1;0), B, C phân biệt sao cho tiếp tuyến tại B và C song song với nhau
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến