Tìm m để phương trình sau có 4 nghiệm phân biệt \(x^{^4}-\left(2m+1\right)x^{^2}+m^{^2}=0\)
Lời giải:
Đặt \(x^2=t\)
Để thu được 4 nghiệm $x$ phân biệt thì pt \(t^2-(2m+1)t+m^2=0^*\) phải có hai nghiệm dương phân biệt.
Trước tiên để có hai nghiệm phân biệt thì:
\(\Delta =(2m+1)^2-4m^2>0\)
\(\Leftrightarrow 4m+1>0\Leftrightarrow m> \frac{-1}{4}\) (1)
Khi đó áp dụng hệ thức Viete với \(t_1,t_2\) là hai nghiệm của \(^*\)
\(\left\{\begin{matrix} t_1+t_2=2m+1\\ t_1t_2=m^2 \end{matrix}\right.\)
Để \(t_1,t_2\) dương thì: \(\left\{\begin{matrix} t_1+t_2=2m+1>0\\ t_1t_2=m^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{-1}{2}\\ meq 0\end{matrix}\right.\) (2)
Từ (1),(2) suy ra điều kiện của m là \(m> \frac{-1}{4}; meq 0\)
tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn
\(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)
Treeh hệ trục tọa độ cho 4 điểm A,B,C,D bất kì
CM \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0\)
giải bất phương trình: \(\dfrac{\left(x+y\right)^2}{4}+\dfrac{x+y}{2}\ge x\sqrt{y}+y\sqrt{x}\)
Rút gọn biểu thức :
\(\dfrac{2\cos^2-1}{\sin+\cos}\)
Cho hình bình hành ABCD có tâm là O. Gọi M, N lần lượt là trung điểm của BC, DC. Chứng minh:
a) \(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\)
b) \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+2\overrightarrow{AB}\right)\)
c) \(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
Câu hỏi hay và khó :D
Bạn nào trả lời nhanh và đúng sẽ được thường 2GP. ( Mình không có quyền trao GP nên mong thầy phynit và các bạn CTV Nguyễn Huy Tú, Đức Minh,... giúp nhé )
Cho a, b, c là các số thực dương thõa mản điều kiện \(abc=8\). CMR:
\(\dfrac{a^2}{\sqrt{\left(a^3+1\right)\left(b^3+1\right)}}+\dfrac{b^2}{\sqrt{\left(b^3+1\right)\left(c^3+1\right)}}+\dfrac{c^2}{\sqrt{\left(c^3+1\right)\left(a^3+1\right)}}\ge\dfrac{4}{3}\)
Tìm giá trị nhỏ nhất của biểu thức : M=\(\left|x+5\right|+\left|x-2\right|+\left(y-3\right)^2\)
giải phương trình
a, \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b, \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
c, \(2x^2+4x=\sqrt{\dfrac{x+3}{2}}\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
e, \(729x^4+8\sqrt{1-x^2}=36\)
f, \(7x^2-10x+14=5\sqrt{x^4+4}\)
g, \(x^3+3x^2-3\sqrt[3]{3x+5}=1-3x\)
h, \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
i, \(\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^2-5x+4}\)
Cho a,b,c là các số thực không âm thõa mãn điều kiện (a+b)(b+c)(c+a)=2
Tìm Max của P=(a2+bc)(b2+ca)(c2+ab)
Cho a,b,c là các số thực không âm. Chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\)
Cho a,b,c là các số dương thõa mãn a+b+c=1. Chứng minh
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Xét xem các mệnh đề sau đâu là đúng hay sai và nêu các mệnh đề phủ định của chúng :
A) A "∀n ∈N, n5 - 3 là bội số của 7 "
B) B " ∃n ∈ R, x2 - 7x +15 >0"
C) D " ∃x ∈ R, x3 + 2x2 +8x +16 =0"
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến