Đáp án đúng: A Phương trình đã cho $\displaystyle \Leftrightarrow \left\{ \begin{array}{l}x>0\\{{x}^{3}}+1>0\\{{x}^{2}}-x+1>0\\{{\log }_{{{{2}^{{}}}}}}({{x}^{3}}+1)-{{\log }_{2}}({{x}^{2}}-x+1)-2{{\log }_{{{{2}^{{}}}}}}x=0\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}x>0\\\frac{{{{x}^{3}}+1}}{{{{x}^{2}}({{x}^{2}}-x+1)}}=0\end{array} \right.$$\displaystyle \Leftrightarrow \left\{ \begin{array}{l}x>0\\\frac{{(x+1)({{x}^{2}}-x+1)}}{{{{x}^{2}}({{x}^{2}}-x+1)}}=0\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}x>0\\x+1=0\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}x>0\\x=-1\end{array} \right.\Rightarrow x\in \varnothing $ Đáp án A