Cho tam giác ABC với A(3;5), B(-3;3) và C(0;1). Viết phương trình các đường thẳng đi qua A, chia tam giác thành 3 phần có diện tích bằng nhau ?
A B H M N C
Giả sử có hai đường thẳng m, n đi qua A, cắt BC theo thứ tự tai M,N sao cho \(S_{\Delta ABM}=S_{\Delta AMN}=S_{\Delta ANC}\)
Khi đó, do ba tam giác này có cùng chiều cao AH nên
\(BM=MN=NC=\frac{1}{3}BC\)
Điều này tương đương với \(\overrightarrow{MC}=-2\overrightarrow{MB}\) và \(\overrightarrow{NB}=-2\overrightarrow{NC}\)
Từ \(\overrightarrow{MC}=-2\overrightarrow{MB}\) suy ra với mọi điểm O
đều có \(\overrightarrow{OM}=\frac{\overrightarrow{OC}+2\overrightarrow{OB}}{3}\) và do đó \(M\left(-2;\frac{7}{3}\right)\)
Ta có :
\(\overrightarrow{AM}=\left(-5;\frac{22}{3}\right)=\frac{1}{3}\left(-15;22\right)\)
Suy ra đường thẳng AN đi qua điểm A(3;-5) và nhận vec tơ \(\overrightarrow{n}=\left(-3;5\right)\) làm vec tơ chỉ phương.
Do đó đường thẳng n có phương trình \(\frac{x-3}{-3}=\frac{y+5}{5}\)
cmr: \(\dfrac{sin2x}{tan\left(\dfrac{\pi}{4}-x\right)\left(1+sin2x\right)}=tan2x\)
Cho x,y,z là ba số thực dương thỏa mãn x+y+z=\(\sqrt{2}\). Tìm Min T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+ \frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z})\)
9-3:1/3+1
Cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}e0\) . Rút gọn biểu thức :
\(A=\dfrac{\left(x^2+y^2+z^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
a. chứng minh a//b
b,tính góc C1
1111ADBC150 độ30 độ59 độ
ai nhanh và đúng mk tick cho
cho tam giác ABC đều có tâm O, cạnh a. Gọi M, N, P là trung điểm của AB, AC, BC
A) tính / BA→ + BC→/ theo a
b) tím các vecto có độ dài bằng /BN→/
c) chứng minh rằng NA→ + MB→ + PC→ = 0→
d) tính / MA→ + MB→ + MN→+ MP→+ MC→/
a^2+b^2+c^2> = a(b+c)
giải phương trình :
\(\left(x-1\right)^4+\left(x+3\right)^4=3\)
Tìm tọa độ điểm M' đối xứng với điểm M (1;4) qua đường thẳng d: x - 2y + 2 =0
CMR76+75+74 chia hết cho11
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến