Phân tích đa thức thành nhan tử:
x3+y3+z3−3xyzx^3+y^3+z^3-3xyzx3+y3+z3−3xyz
=x3+3x2y+3xy2+y3−3x2y−3xy2−3xyz+z3=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2-3xyz+z^3=x3+3x2y+3xy2+y3−3x2y−3xy2−3xyz+z3
=(x+y)3+z3−3xy(x+y+z)=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=(x+y)3+z3−3xy(x+y+z)
=(x+y+z)[(x+y)2−(x+y)z+z2]−3xy(x+y+z)=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=(x+y+z)[(x+y)2−(x+y)z+z2]−3xy(x+y+z)
=(x+y+z)(x2+2xy+y2−xz−yz+z2)−3xy(x+y+z)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=(x+y+z)(x2+2xy+y2−xz−yz+z2)−3xy(x+y+z)
=(x+y+z)(x2+y2+z2−xy−xz−yz)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=(x+y+z)(x2+y2+z2−xy−xz−yz)
(3x+1)2−(x+1)2\left(3x+1\right)^2-\left(x+1\right)^2(3x+1)2−(x+1)2
tìm x
4x^2 - 4x = -1
8x^3 +12x^2 + 6x +1=0
Tính nhanh:37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5
tìm x biết
2-25x2=0
Phân tích đa thức thành nhân tử:::!! 3+22–√ 3 + 2 2\sqrt{2}2
tim min hoac max neu co
a,A=x2-2x+50
b,B=12x-x2
c,C=(x+1)(x-2)(x-3)(x-6)
help me!!!
Tìm n∈Nn\in Nn∈N sao cho 3n+193^n+193n+19 là 1 số chính phương
tìm GTLN của A=x - x2
2x2−5x−122x^2-5x-122x2−5x−12
1). 4x2+4x+14x^2+4x+14x2+4x+1
2). 9x2−24xy+16y29x^2-24xy+16y^29x2−24xy+16y2
3). −x2+10x−25-x^2+10x-25−x2+10x−25
4). 1+12x+36x21+12x+36x^21+12x+36x2
5). x24+2xy+4y2\dfrac{x^2}{4}+2xy+4y^24x2+2xy+4y2
6). 4x2+4xy+y24x^2+4xy+y^24x2+4xy+y2
7). 19x2−23x+1\dfrac{1}{9}x^2-\dfrac{2}{3}x+191x2−32x+1
8). x2−x+14x^2-x+\dfrac{1}{4}x2−x+41
9). x2+2x+1x^2+2x+1x2+2x+1
10). −y2+2yz−z2-y^2+2yz-z^2−y2+2yz−z2
11). 4x2−12xy+9y24x^2-12xy+9y^24x2−12xy+9y2
12) −4x2+2x−14-4x^2+2x-\dfrac{1}{4}−4x2+2x−41
13). x2+10x+25x^2+10x+25x2+10x+25
14) x2+8x+16x^2+8x+16x2+8x+16
15). x2−6x+9x^2-6x+9x2−6x+9
16). 4x2+12x+94x^2+12x+94x2+12x+9
17). 4x2+20x2+254x^2+20x^2+254x2+20x2+25
18). −9x4+12x2y2−4y4-9x^4+12x^2y^2-4y^4−9x4+12x2y2−4y4
19). x10−4x8+4x6x^{10}-4x^8+4x^6x10−4x8+4x6