Cho E={1;2;3;4;5;6} , A={3;6},B={2;3;5}
CMR :
E\(\(A\cap B\)) = (E\A)U(E\B)
E\(AUB)=(E\A)\(\cap\)(E\B)
+) ta có : \(A\cap B=\left\{3\right\}\) \(\Rightarrow E\backslash\left(A\cap B\right)=\left\{1;2;4;5;6\right\}\)
ta có : \(E\backslash A=\left\{1;2;4;5\right\}\) và \(E\backslash B=\left\{1;4;6\right\}\)
\(\Rightarrow\left(E\backslash A\right)\cup\left(E\backslash B\right)=\left\{1;2;4;5;6\right\}\)
\(\Rightarrow E\left(A\cap B\right)=\left(E\backslash A\right)\cup\left(E\backslash B\right)\) (đpcm)
+) ta có : \(A\cup B=\left\{2;3;5;6\right\}\) \(\Rightarrow E\backslash\left(A\cup B\right)=\left\{1;4\right\}\)
\(\Rightarrow\left(E\backslash A\right)\cap\left(E\backslash B\right)=\left\{1;4\right\}\)
\(\Rightarrow E\left(A\cup B\right)=\left(E\backslash A\right)\cap\left(E\backslash B\right)\) (đpcm)
Cho tam giác ABC có B(9;7), C(11;-1), M và N lần lượt là trung điểm của AB, AC. Tọa độ của \(\overrightarrow{MN}\)
Tìm gtnn,gtln
y=(x2+2x+2)/(x2+2)
Giải phương trình \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Tìm x để P(x) là mệnh đề đúng:
a. P(x): x2 - 3x > 0"
b. P(x): "\(\sqrt{x}\) lớn hơn hoặc bằng x"
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
C/m bổ đề \(a,b,c>0\) and \(a+b+c=1\). Khi đó \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}}+\dfrac{1}{q}-6\)\(\left(ab+bc+ca=q;1\ge3q>0\right)\) (VQBC)
1. Cho hbh ABCD và một điểm M tuỳ ý. Cmr: vecto MA + MC= MB+MD
2. Cho tam giác ABC bên ngoài tam giác vẽ hbh ABIJ BCPQ CARS. Cmr: vecto RJ + IQ + PD= vecto 0
3. Cho 3 điểm O A B ko thẳng hàng. Với điều kiện nào vecto OA + OB nằm trên đường phân giác của góc AOB
Tìm Min: \((x-1)^4+(x-3)^4+6(x-1)^2(x-3)^2\)
@Lightning Farron
cho a,b,c >0 thoả mãn \(\sum a=1\)
CMR: \(\sum a^3+72abc\left(\sum ab\right)\le1\)
tìm max
x-xmux2
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến