Cho tứ diện ABCD. Gọi M là điểm trong không gian định bởi: MA→ + MB→ + MC→ =3MD→Mệnh đề đúng trong các mệnh đề sau:A. M là trung điểm của AB. B. M là trung điếm của BC. C. M là trung điểm của CA. D. M là trung điếm của GD với G là trọng tâm của tam giác ABC.
Trong không gian, cho ba vectơ p→, q→, r→là ba vectơ không đồng phẳng. Giá trị của X đế ba vectơa→= p→ + 2q→ + 3r→, b→ = -p→ + q→ + r→, c→ = xp→ + q→ - 2r→ đồng phẳng là:A. -10 B. 10 C. 5 D. -5
Cho dãy số (un) có giới hạn 0. Ta xét các mệnh đề:Trong các mệnh đề trên: A. Có 1 trong 4 mệnh đề đúng. B. Có 2 trong 4 mệnh đề đúng. C. Có 3 trong 4 mệnh đề đúng. D. Tất cả 4 mệnh đề đều đúng.
A. B. C. D.
Tìm để các hàm số liên tục tại A. B. C. 0 D. 1
Đạo hàm của y=1x2-2x+5 là A. y'=12x-2. B. y'=2x-2(x2-2x+5)2. C. y'=(2x-2)(x2-2x+5). D. Một kết quả khác.
Cho tứ diện $\displaystyle ABCD$ có$\displaystyle AB=AC$ và$\displaystyle DB=DC.$ Khẳng định nào sau đây đúng?A. $\displaystyle AB\bot \left( \text{ }ABC \right).$ B. $\displaystyle BC\bot AD.$ C. $\displaystyle CD\bot \left( \text{ }ABD \right).$ D. $\displaystyle AC\bot BD.$
Tính giới hạn $\lim \left( 3{{n}^{4}}+4{{n}^{2}}-n+1 \right).$A. $L=7.$ B. $L=-\infty .$ C. $L=3.$ D. $L=+\infty .$
Cho hàm số y = 2x + cos2x có đồ thị là (C). Hoành độ các điểm trên (C) có tiếp tuyến song song hoặc trùng với trục hoành là:A. B. x = + k2 C. x = + k D. x = k2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, có AB = 2a và góc BAD bằng 1200. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) trùng với giao điểm I của hai đường chéo và $SI=\frac{a}{2}$ . Tính góc tạo bởi mặt phẳng (SAB) và mặt phẳng (ABCD).A. 300 B. 450 C. 600 D. 900
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến