Giải thích các bước giải:
b.$\lim\sqrt[3]{n^3-2n^2}-n$
$=\lim\dfrac{n^3-2n^2-n^3}{\sqrt[3]{n^3-2n^2}^2+n\sqrt[3]{n^3-2n^2}+n^2}$
$=\lim\dfrac{-2n^2}{\sqrt[3]{n^3-2n^2}^2+n\sqrt[3]{n^3-2n^2}+n^2}$
$=\lim\dfrac{-2}{\sqrt[3]{n^3-2n^2}^2:n^2+n\sqrt[3]{n^3-2n^2}:n^2+1}$
$=\lim\dfrac{-2}{\sqrt[3]{1-\dfrac{2}{n}}^2+\sqrt[3]{1-\dfrac{2}{n}}+1}$
$=\dfrac{-2}{\sqrt[3]{1-0}^2+\sqrt[3]{1-0}+1}$
$=\dfrac{-2}{3}$