Cho N = 2n4 - 7n3 - 2n3 + 13n + 6 ( n thuộc Z)
C/m N chia hết 6
Bài nà viết sai đề
\(N=2n^4-7n^3-2n^3+13n+6=(n-2)(n-3)(n+1)(2n+1)\)
(*) Ta có n\(\in Z\)=> n-2,n-3 là 2 số nguyên liên tiếp=> có 1 số \(\vdots 2\)
=> (n-2)(n-3)(n+1)(2n+1)\(\vdots 2\) (1)
(*) Vì n là số nguyên nên có 3 dạng 3k,3k+1,3k+2
Với n=3k=>n-3 \(\vdots 3\)=>\(N\vdots 3\)
Với n=3k+1=>\(2n+1 \vdots 3\)=> N\(\vdots 3\)
Với n=3k+2=> n+1 \(\vdots 3\)=> N \(\vdots 3\)
=> N\(\vdots 3 mọi n\)(2)
Từ (1),(2) kết hợp (2,3)=1=> N\(\vdots 6\)
Vậy N chia hết cho 6
Bài 13 (Sách bài tập - trang 27)
Quy đồng mẫu thức các phân thức sau :
a) \(\dfrac{25}{14x^2y};\dfrac{14}{21xy^5}\)
b) \(\dfrac{11}{102x^4y};\dfrac{3}{34xy^3}\)
c) \(\dfrac{3x+1}{12xy^4};\dfrac{y-2}{9x^2y^3}\)
d) \(\dfrac{1}{6x^3y^2};\dfrac{x+1}{9x^2y^4};\dfrac{x-1}{4xy^3}\)
e) \(\dfrac{3+2x}{10x^4y};\dfrac{5}{8x^2y^2};\dfrac{2}{3xy^5}\)
f) \(\dfrac{4x-4}{2x\left(x+3\right)};\dfrac{x-3}{3x\left(x+1\right)}\)
g) \(\dfrac{2x}{\left(x+2\right)^3};\dfrac{x-2}{2x\left(x+2\right)^2}\)
h) \(\dfrac{5}{3x^3-12x};\dfrac{3}{\left(2x+4\right)\left(x+3\right)}\)
Bài 14 (Sách bài tập - trang 27)
Quy đồng mẫu thức các phân thức :
a) \(\dfrac{7x-1}{2x^2+6x};\dfrac{5-3x}{x^2-9}\)
b) \(\dfrac{x+1}{x-x^2};\dfrac{x+2}{2-4x+2x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1};\dfrac{2x}{x^2+x+1};\dfrac{6}{x-1}\)
d) \(\dfrac{7}{5x};\dfrac{4}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
e) \(\dfrac{5x^2}{x^3+6x^2+12x+8};\dfrac{4x}{x^2+4x+4};\dfrac{3}{2x+4}\)
Bài 15 (Sách bài tập - trang 28)
Cho đa thức :
\(B=2x^3+3x^2-29x+30\) và hai phân thức :
\(\dfrac{x}{2x^2+7x-15};\dfrac{x+2}{x^2+3x-10}\)
a) Chia đa thức B lần lượt cho các mẫu thức của hai phân thức đã cho
b) Quy đồng mẫu thức của hai phân thức đã cho
Bài 16 (Sách bài tập - trang 28)
Cho hai phân thức :
\(\dfrac{1}{x^2-4x-5}\) và \(\dfrac{2}{x^2-2x-3}\)
Chứng tỏ rằng có thể chọn đa thức \(x^3-7x^2+7x+15\) làm mẫu thức chung để quy đồng hai phân thức đã cho. Hãy quy đồng mẫu thức ?
Bài 4.1 - Bài tập bổ sung (Sách bài tập - trang 28)
Quy đồng mẫu thức ba phân thức :
\(\dfrac{x}{x^2-2xy+y^2-z^2};\dfrac{y}{y^2-2yz+z^2-x^2};\dfrac{z}{z^2-2zx+x^2-y^2}\)
Bài 4.2* - Bài tập bổ sung (Sách bài tập - trang 28)
\(\dfrac{1}{x^2+ax-2}\) và \(\dfrac{2}{x^2+5x+b}\)
Hãy xác định a và b biết rằng khi quy đồng mẫu thức chúng trở thành những phân thức có mẫu thức chung là \(x^3+4x^2+x-6\)
Viết tường minh hai phân thức đã cho và hai phân thức thu được sau khi quy đồng với mẫu thức chung là \(x^3+4x^2+x-6\)
Phân tích đa thức thành nhân tử ( phương pháp đồng nhất hệ số ):
C = x4 - x3 + 2x2 - 11x - 5
Thực hiện phép tính: x/x^2-4 +2/2-x +1/x+2
Bài 18 (Sách bài tập - trang 28)
Cộng các phân thức khác mẫu thức :
a) \(\dfrac{5}{6x^2y}+\dfrac{7}{12xy^2}+\dfrac{11}{18xy}\)
b) \(\dfrac{4x+2}{15x^3y}+\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
c) \(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
d) \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
1. Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào các biến:
a) ( x+2 )^2 - 2(x+2)(x-8) + ( x-8)^2
b) (x+y-z-t)^2 - ( z + t - x - y )^2
2. chứng minh rằng với mọi số nguyên n, ta có n^3 - n luôn chia hết cho 6
3. Tìm cặp số nguyên ( x; y) sao cho: x + 3y = xy + 3
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến