5. Phân tích các đa thức sau đây thành nhân tử
1. a3 - 7a - 6
2. a3 + 4a2 - 7a - 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc
4. (a2 + a)2 + 4(a2 + a) - 12
5. (x2 + x + 1) (x2 + x + 2) - 12
6. x8 + x + 1
7. x10 + x5 + 1
2\
a3+4a2-7a-10
= a3-2a2+6a2-12a+5a-10
=a2(a-2) +6a(a-2) +5(a-2)
= (a-2)(a2+6a+5)
= (a-2)(a+1)(a+5)
4\
(a2+a)2+4(a2+a)-12
= (a2+a)2+4(a2+a)+4-16
= (a2+a+2)2-16
= (a2+a+6)(a2+a-2)
5/
(x2+x+1)(x2+x+2)-12
đặt x2+x+1=a
⇒ a(a+1)-12
= a2+a-12
= a2-3a+4a-12
= a(a-3)+4(a-3)
= (a-3)(a+4)
⇒ (x2+x-2)(x2+x+5)
6\
x8+x+1
= x8+x7+x6-x7-x6-x5+x5+x4+x3-x4-x3-x2+x2+x+1
= x6(x2+x+1) - x5(x2+x+1) +x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)
= (x2+x+1)(x6-x5+x3+x2+1)
7\
x10+x5+1
= x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1
= x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x8-x7+x5-x4+x3-x+1)
tìm x: 2x^2+3x-1=0
Cho N = 2n4 - 7n3 - 2n3 + 13n + 6 ( n thuộc Z)
C/m N chia hết 6
Bài 13 (Sách bài tập - trang 27)
Quy đồng mẫu thức các phân thức sau :
a) \(\dfrac{25}{14x^2y};\dfrac{14}{21xy^5}\)
b) \(\dfrac{11}{102x^4y};\dfrac{3}{34xy^3}\)
c) \(\dfrac{3x+1}{12xy^4};\dfrac{y-2}{9x^2y^3}\)
d) \(\dfrac{1}{6x^3y^2};\dfrac{x+1}{9x^2y^4};\dfrac{x-1}{4xy^3}\)
e) \(\dfrac{3+2x}{10x^4y};\dfrac{5}{8x^2y^2};\dfrac{2}{3xy^5}\)
f) \(\dfrac{4x-4}{2x\left(x+3\right)};\dfrac{x-3}{3x\left(x+1\right)}\)
g) \(\dfrac{2x}{\left(x+2\right)^3};\dfrac{x-2}{2x\left(x+2\right)^2}\)
h) \(\dfrac{5}{3x^3-12x};\dfrac{3}{\left(2x+4\right)\left(x+3\right)}\)
Bài 14 (Sách bài tập - trang 27)
Quy đồng mẫu thức các phân thức :
a) \(\dfrac{7x-1}{2x^2+6x};\dfrac{5-3x}{x^2-9}\)
b) \(\dfrac{x+1}{x-x^2};\dfrac{x+2}{2-4x+2x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1};\dfrac{2x}{x^2+x+1};\dfrac{6}{x-1}\)
d) \(\dfrac{7}{5x};\dfrac{4}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
e) \(\dfrac{5x^2}{x^3+6x^2+12x+8};\dfrac{4x}{x^2+4x+4};\dfrac{3}{2x+4}\)
Bài 15 (Sách bài tập - trang 28)
Cho đa thức :
\(B=2x^3+3x^2-29x+30\) và hai phân thức :
\(\dfrac{x}{2x^2+7x-15};\dfrac{x+2}{x^2+3x-10}\)
a) Chia đa thức B lần lượt cho các mẫu thức của hai phân thức đã cho
b) Quy đồng mẫu thức của hai phân thức đã cho
Bài 16 (Sách bài tập - trang 28)
Cho hai phân thức :
\(\dfrac{1}{x^2-4x-5}\) và \(\dfrac{2}{x^2-2x-3}\)
Chứng tỏ rằng có thể chọn đa thức \(x^3-7x^2+7x+15\) làm mẫu thức chung để quy đồng hai phân thức đã cho. Hãy quy đồng mẫu thức ?
Bài 4.1 - Bài tập bổ sung (Sách bài tập - trang 28)
Quy đồng mẫu thức ba phân thức :
\(\dfrac{x}{x^2-2xy+y^2-z^2};\dfrac{y}{y^2-2yz+z^2-x^2};\dfrac{z}{z^2-2zx+x^2-y^2}\)
Bài 4.2* - Bài tập bổ sung (Sách bài tập - trang 28)
\(\dfrac{1}{x^2+ax-2}\) và \(\dfrac{2}{x^2+5x+b}\)
Hãy xác định a và b biết rằng khi quy đồng mẫu thức chúng trở thành những phân thức có mẫu thức chung là \(x^3+4x^2+x-6\)
Viết tường minh hai phân thức đã cho và hai phân thức thu được sau khi quy đồng với mẫu thức chung là \(x^3+4x^2+x-6\)
Phân tích đa thức thành nhân tử ( phương pháp đồng nhất hệ số ):
C = x4 - x3 + 2x2 - 11x - 5
Thực hiện phép tính: x/x^2-4 +2/2-x +1/x+2
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến