Tìm m để f(x) = x2 - 2(m-1)x + m -2 \(\le\) 0 \(\forall\)x \(\in\) \([\)0;1\(]\)
f(x) là parabol quay lên --> phải có nghiệm 0, 1
hệ số a=1
=> \(\Delta>0\Rightarrow m^2-m+3>0\)
=> đúng với mọi m
f(x) phải có nghiệm nằm ngoài [0,1]
f(x) pa ra pol quay lện
f(0) <=0=m-2 =0 => m<= 2
f(1) <=0=0=> 1-2(m-1) +m-2 =0 => 1-m<=0 => m>=1
Kết luận
\(1\le m\le2\)
Tìm các gái trị của m để bpt sau có nghiệm
\(\left\{\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
Mn giúp mjk đi mà
Tìm m để bpt sau có nghiệm :
2x2 - (m-9)x + m2 + 3m+4>= 0
Giải bất phương trình :
\(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2-\sqrt{3}\right)^{\frac{x-1}{x+1}}\)
\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\) (1)
Xét dấu các biểu thức tích, thương các tam thức bậc hai
a. \(f\left(x\right)=x^2\left(2-x-x^2\right)\left(x+2\right)\)
b. \(f\left(x\right)=\frac{x^4-3x^3+2x^2}{x^2-x-30}\)
BT: Viết pt đường tròn đi qua M(1;2) và tiếp xúc với d: 3x - 4y = 2 = 0 tại điểm I(-2;-1). Bài này làm sao mọi người ơi, hướng dẫn giúp mình với ạ ?!!
Bài 3.27 (SBT trang 152)
Cho hai đường tròn \(\left(C_1\right):x^2+y^2-6x+5=0\)
\(\left(C_2\right):x^2+y^2-12x-6y+44=0\)
a) Tìm tâm và bán kính của \(\left(C_1\right)\) và \(\left(C_2\right)\)
b) Lập phương trình tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\)
Bài 3.23 (SBT trang 151)
Cho đường tròn (C) : \(x^2+y^2-6x+2y+6=0\) và điểm \(A\left(1;3\right)\)
a) Chứng tỏ rằng điểm A nằm ngoài đường tròn (C)
b) Lập phương trình tiếp tuyến với (C) xuất phát từ điểm A
Bài 3.22 (SBT trang 151)
Cho đường tròn (C) : \(x^2+y^2-x-7y=0\) và đường thẳng d : \(3x+4y-3=0\)
a) Tìm tọa độ giao điểm của (C) và d
b) Lập phương trình tiếp tuyến với (C) tại các giao điểm đó
c) Tìm tọa độ giao điểm của hai tiếp tuyến
Bài 3.21 (SBT trang 151)
Lập phương trình của đường tròn (C) tiếp xúc với các trục tọa độ và đi qua điểm \(M\left(4;2\right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến