Tìm m để các bất phương trình sau vô nghiệm :
a) \(5x^2-x+m\le0\)
b) \(mx^2-10x-5\ge0\)
Làm lại:
a)
\(5x^2-x+m\le0\)(a)
để (a)vô nghiệm \(\Rightarrow5x^2-x+m=0\) phải vô nghiệm => \(\Delta=1-20m< 0\Rightarrow m>\dfrac{1}{20}\)
b)\(mx^2-10x-5\ge0\left(b\right)\)
Để b vô nghiệm cần
(1) \("a"e0\Rightarrow me0\)
(2) \("a"< 0\Rightarrow m< 0\)
(3) \(\left[{}\begin{matrix}\Delta\\\Delta'\end{matrix}\right.< 0\Rightarrow\)\(5^2+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\)
(1)&(2)(3)Kết luận \(m< -5\)
Bài 58 (SBT trang 124)
Tìm m để các phương trình sau có hai nghiệm dương phân biệt :
a) \(\left(m^2+m+1\right)x^2+\left(2m-3\right)x+m-5=0\)
b) \(x^2-6mx+2-2m+9m^2=0\)
Bài 54 (SBT trang 123)
Với giá trị nào của tham số m hệ phương trình có nghiệm thỏa mãn điều kiện \(x>0,y< 0\) >
\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\\m^4x+\left(2m^2+1\right)y=1\end{matrix}\right.\)
Bài 53 (SBT trang 123)
Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt :
a) \(x^2-2x+m^2+m+3=0\)
b) \(\left(m^2+m+3\right)x^2+\left(4m^2+m+2\right)x+m=0\)
Bài 52 (SBT trang 123)
Tìm các giá trị của tham số m để các phương trình sau có 2 nghiệm phân biệt trái dấu :
a) \(\left(m^2-1\right)x^2+\left(m+3\right)x+\left(m^2+m\right)=0\)
b) \(x^2-\left(m^3+m-2\right)x+m^2+m-5=0\)
Bài 51 (SBT trang 123)
Tìm các giá trị của tham số m để các tam thức bậc hai sau có dấu không đổi (không phụ thuộc vào x) :
a) \(f\left(x\right)=2x^2-\left(m+2\right)x+m^2-m-1\)
b) \(f\left(x\right)=\left(m^2-m-1\right)x^2-\left(2m-1\right)x+1\)
Bài 50 (SBT trang 123)
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau :
a) \(\left\{{}\begin{matrix}2m-1>0\\m^2-\left(m-2\right)\left(2m-1\right)< 0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2-m-2< 0\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\end{matrix}\right.\)
Bài 49 (SBT trang 123)
a) \(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\\\dfrac{1}{m^2-m}>0\\\dfrac{2m-1}{m^2-m}>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\\\dfrac{m-2}{m+3}< 0\\\dfrac{m-1}{m+3}>0\end{matrix}\right.\)
Bài 48 (SBT trang 122)
a) \(\left(2m-1\right)^2-4\left(m+1\right)\left(m-2\right)\ge0\)
b) \(m^2-\left(2m-1\right)\left(m+1\right)< 0\)
Bài 47 (SBT trang 122)
a) \(2m^2-m-5>0\)
b) \(-m^2+m+9>0\)
Bài 46 (SBT trang 122)
Giải các bất phương trình sau :
a) \(\left\{{}\begin{matrix}x^2\ge4x\\\left(2x-1\right)^2< 9\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x-3< \left(x+1\right)\left(x-2\right)\\x^2-x\le6\end{matrix}\right.\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến