Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau ?
Dùng phép tịnh tiến đưa về hai đa giác đều cùng tâm đối xứng, sau đó dùng phép quay đưa về hai đa giác đều cùng tâm đối xứng có các đỉnh tương ứng thẳng hàng với tâm, cuối cùng dùng phép vị tự biến đa giác này thành đa giác kia
Bài 1.28 (Sách bài tập - trang 38)
Trong mặt phẳng xOy cho đường tròn (C) có phương trình \(\left(x-1\right)^2+\left(y-2\right)^2=4\). Hãy viết phương trình đường tròn (C') là ảnh qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k=-2\) và phép đối xứng qua trục Ox ?
Bài 2.9 (Sách bài tập - trang 67)
Cho tứ diện SABC có D, E lần lượt là trung điểm AC, BC và G là trọng tâm tam giác ABC. Mặt phẳng \(\left(\alpha\right)\) qua AC cắt SE, SB lần lượt tại M, N. Một mặt phẳng \(\left(\beta\right)\) qua BC cắt SD và SA lần lượt tại P và Q.
a) Gọi \(I=AM\cap DN,J=BP\cap EQ\). Chứng minh bốn điểm S, I, J, G thẳng hàng
b) Giả sử \(AN\cap DM=K,BQ\cap EP=L\). Chứng minh ba điểm S, K, L thẳng hàng
Bài 2.5 (Sách bài tập - trang 67)
Cho hình chóp A.ABCD. Lấy M, N và P lần lượt là các điểm trên các đoạn SA, AB và BC sao cho chúng không trùng với trung điểm của các đoạn thẳng ấy. Tìm giao điểm (nếu có) của mặt phẳng (MNP) với các cạnh của hình chóp ?
Bài 2.3 (Sách bài tập - trang 66)
Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)
a) Hãy xác định điểm L
b) Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD
cho hình chóp SABCD có đáy là hbh
M là trung điểm của SB
G là trọng tâm của tam giác SAD
chứng tỏ (CMG) đi qua trung điểm SA
với một cái thước thẳng , làm thế nào để phát hiện một mặt bàn có phẳng hay không ? nói rõ căn cứ vào đâu mà ta làm như vậy ?
cho 2 mặt phẳng (P) và (Q) cắt nhau theo giao tuyến \(\Delta\) . trên (P) cho đường thẳng a và trên (Q) cho đường thẳng b . chứng minh rằng nếu a và b cắt nhau thì giao điểm phải nằm trên \(\Delta\)
chọn ngẫu nhiên 5 học sinh có tên trong 1 danh sách được đánh số thứ tự từ 001 đến 199 . tính xác suất để 5 học sinh này có số thứ tự :
a) từ 001 đến 099 (chính xác đến hàng phần nghìn)
b) từ 150 đến 199 (chính xác đến hàng phần vạn)
giải thích vì sao các đồ vật có 4 chân như bàn , ghế ,... thường bị cập kênh ?
cho 2 đường thẳng a và b cắt nhau tại điểm O và đường thẳng c cắt mặt phẳng (a , b) tại I khác O . Gọi M là điểm di động trên c và khác I . Chứng minh rằng giao tuyến của các mặt phẳng (M , a) , (M , b) nằm trên một mặt phẳng cố định .
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến