Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 - 3x2 + 3mx + 1 - m tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc 45o ?
A. m = 0 B. m = 2 C.m = 3/4 D. m = 2 hoặc m = 3/4
ta có y' = 3x2 - 6x + 3m. hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt
<=> δ' = 32 -3.3m > 0 <=> m < 1 (*)
chia y cho y’ ta được:
giả sử x1, x2 là hai nghiệm phân biệt của y’=0
phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1
(d) có vectơ pháp tuyến là n1→ = (2m - 2; -1)
(δ) : 3x+y-8=0 có vectơ pháp tuyến là n2→(3; 1)
vì góc giữa đường thẳng (d) và (δ) là 45o nên
đối chiếu điều kiện (*) có m = 3/4
Cho hàm số y = x3 -3x2 - 9x + 4. Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:
A. y = -8x - 17 B. y = x + 7 C. y = -x + 1 D. Không tồn tại
Cho hàm số y = x3 - 3x2 - 6x + 8 (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:
A. y = 6x - 6 B. y = -6x - 6 C. y = 6x + 6 D. y = -6x + 6
Với giá trị nào của m, đồ thị hàm số y = x3 - 3mx2 + m có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?
A. m = 0 B. m = 1 C. m = -3/2 D. m = -3/2 hoặc m = 1
Với giá trị nào của m, đồ thị hàm số y = x3 - mx2 + 3(m2 - 1)x - m 3 + m có điểm cực đại B, điểm cực tiểu C thỏa mãn OC = 3OB, với O là gốc tọa độ?
Với giá trị nào của m, hàm số y = x3 + 2(m - 1)x2 + (m2 - 4m + 1)x + 2(m2 + 1) có hai điểm cực trị x1,x2 thỏa mãn
A. m = 1/2 B. m = 2 C. m = 1/2 hoặc m = 2 D. Không tồn tại
Với giá trị nào của m, hàm số y = (x - m)3 - 3x đạt cực tiểu tại điểm có hoành độ x = 0?
A. m = 1 B. m = -1 C. m = 0 D. Không tồn tại
Giá trị của m để hàm số y = x3 - 3mx2 + (m2 - 1)x + 2 đạt cực đại tại x = 2 là:
A. m = 1 B. m = 11 C. m = -1 D. Không tồn tại
Với giá trị nào của m, hàm số y = -mx4 + 2(m - 1)x2 + 1 - 2m có một cực trị
A.0 ≤ m ≤ 1 B. m > 1 hoặc m < 0 C. 0 < m < 1 D. 0 < m ≤ 1
Với giá trị nào của m, hàm số y = x3 - 2x2 + mx - 1 không có cực trị?
Hàm số y = cosx đạt cực trị tại những điểm
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến