Cho hình vẽ. Tính tỉ số lượng giác của \(\angle B\) từ đó suy ra tỉ số lượng giác của \(\angle C\)
A.\(\begin{array}{l}\sin B = \frac{4}{5}\,\,;\,\,\cos B = \frac{3}{5}\,\,;\,\,\tan B = \frac{4}{3}\,\,;\,\,\cot B = \frac{3}{4}\\\sin C = \frac{3}{5}\,\,;\,\,\cos C = \frac{4}{5}\,\,;\,\,\tan C = \frac{3}{4}\,\,;\,\,\cot C = \frac{4}{3}\end{array}\)
B.\(\begin{array}{l}\sin B = \frac{3}{5}\,\,;\,\,\cos B = \frac{4}{5}\,\,;\,\,\tan B = \frac{3}{4}\,\,;\,\,\cot B = \frac{4}{3}\\\sin C = \frac{4}{5}\,\,;\,\,\cos C = \frac{3}{5}\,\,;\,\,\tan C = \frac{4}{3}\,\,;\,\,\cot C = \frac{3}{4}\end{array}\)
C.\(\begin{array}{l}\sin B = \frac{4}{5}\,\,;\,\,\cos B = \frac{3}{5}\,\,;\,\,\tan B = \frac{4}{3}\,\,;\,\,\cot B = \frac{3}{4}\\\sin C = \frac{4}{5}\,\,;\,\,\cos C = \frac{3}{5}\,\,;\,\,\tan C = \frac{4}{3}\,\,;\,\,\cot C = \frac{3}{4}\end{array}\)
D.\(\begin{array}{l}\sin B = \frac{3}{5}\,\,;\,\,\cos B = \frac{4}{5}\,\,;\,\,\tan B = \frac{3}{4}\,\,;\,\,\cot B = \frac{4}{3}\\\sin C = \frac{3}{5}\,\,;\,\,\cos C = \frac{4}{5}\,\,;\,\,\tan C = \frac{3}{4}\,\,;\,\,\cot C = \frac{4}{3}\end{array}\)