Đáp án đúng: A
Phương pháp giải:
Đường tròn \(\left( C \right):\,\,{x^2} + {y^2} + 2x - 4y - 4 = 0\) có tâm \(I\left( { - 1;\,\,2} \right)\) và bán kính \(R = 3.\)
Ta có: \(\overrightarrow {IA} = \left( {3;\,\,3} \right) \Rightarrow IA = 3\sqrt 2 > R \Rightarrow A\) nằm ngoài đường tròn \(\left( C \right).\)
Từ đó suy ra phương trình các đường tiếp tuyến của đường tròn \(\left( C \right)\) và tìm tọa độ các điểm \(M,\,\,N \Rightarrow MN.\)
Giải chi tiết:Đường tròn \(\left( C \right):\,\,{x^2} + {y^2} + 2x - 4y - 4 = 0\) có tâm \(I\left( { - 1;\,\,2} \right)\) và bán kính \(R = 3.\)
Ta có: \(\overrightarrow {IA} = \left( {3;\,\,3} \right) \Rightarrow IA = 3\sqrt 2 > R \Rightarrow A\) nằm ngoài đường tròn \(\left( C \right).\)
\( \Rightarrow \) Từ \(A\) có thể kẻ được 2 đường tiếp tuyến với đường tròn \(\left( C \right).\)
Gọi tiếp tuyến của đường tròn \(\left( C \right)\) kẻ từ \(A\left( {2;\,5} \right)\) và có VTPT là \(\overrightarrow n = \left( {a;\,\,b} \right).\)
\(\begin{array}{l} \Rightarrow d:\,\,\,a\left( {x - 2} \right) + b\left( {y - 5} \right) = 0\\ \Rightarrow d:\,\,\,ax + by - 2a - 5b = 0\end{array}\)
\(\begin{array}{l} \Rightarrow d\left( {I;\,\,d} \right) = R \Leftrightarrow \frac{{\left| { - a + 2b - 2a - 5b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 3\\ \Leftrightarrow \left| { - 3a - 3b} \right| = 3\sqrt {{a^2} + {b^2}} \\ \Leftrightarrow \left| {a + b} \right| = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} + 2ab = {a^2} + {b^2}\\ \Leftrightarrow ab = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0 \Rightarrow {d_1}:\,\,\,\,y - 5 = 0\\b = 0 \Rightarrow {d_2}:\,\,\,x - 2 = 0\end{array} \right..\end{array}\)
Vậy có hai tiếp tuyến là \({d_1}:\,\,\,y = 5\) và \({d_2}:\,\,x = 2.\)
Gọi \(M = {d_1} \cap \left( C \right) \Rightarrow \) Tọa độ điểm \(M\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}y = 5\\{x^2} + {y^2} - 2x - 6y + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5\\x = - 1\end{array} \right. \Rightarrow M\left( { - 1;\,\,5} \right).\)
Gọi \(N = {d_2} \cap \left( C \right) \Rightarrow \) Tọa độ điểm \(N\) là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}x = 2\\{x^2} + {y^2} - 2x - 6y + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right. \Rightarrow N\left( {2;\,\,2} \right).\\ \Rightarrow MN = \sqrt {{{\left( {2 + 1} \right)}^2} + {{\left( {2 - 5} \right)}^2}} = 3\sqrt 2 .\end{array}\)
Chọn A.