Tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng :
a) \(MH=MK\)
b) \(\widehat{B}=\widehat{C}\)
A B M C H K
a) Xết hai tam giác vuông AMH và AMK có:
AM: cạnh huyền chung
\(\widehat{HAM}=\widehat{KAM}\left(gt\right)\)
Vậy: \(\Delta AMH=\Delta AMK\left(ch-gn\right)\)
Suy ra: MH = MK (hai cạnh tương ứng)
b) Xét hai tam giác vuông MHB và MKC có:
MB = MC (gt)
MH = MK (cmt)
Vậy: \(\Delta MHB=\Delta MKC\left(ch-cgv\right)\)
Suy ra: \(\widehat{B}=\widehat{C}\) (hai góc tương ứng).
Bài 96 (Sách bài tập - tập 1 - trang 151)
Cho tam giác ABC cân tại A. Các đường trung trực của AB, AC cắt nhau ở I. Chứng minh rằng AI là tia phân giác của góc A ?
Bài 97 (Sách bài tập - tập 1 - trang 151)
Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A ?
Bài 98 (Sách bài tập - tập 1 - trang 151)
Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A.
Chứng minh rằng tam giác ABC là tam giác cân ?
Bài 99 (Sách bài tập - tập 1 - trang 151)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh :
a) \(BH=CK\)
b) \(\Delta ABH=\Delta ACK\)
Bài 100 (Sách bài tập - tập 1 - trang 151)
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tạ I. Chứng minh rằng AI là tia phân giác của góc A
Hướng dẫn : Từ I, kẻ các đường vuông góc với các cạnh của tam giác ABC
Bài 101 (Sách bài tập - tập 1 - trang 151)
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK
Bài 8.1 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 152)
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0;AC=DE\) bằng nhau nếu có thêm
a) \(BC=EF\)
b) \(\widehat{C}=\widehat{E}\)
c) \(\widehat{C}=\widehat{F}\)
Bài 8.2 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 152)
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0;AC=DF;\widehat{B}=\widehat{E}\). Các tam giác vuông đó có bằng nhau không ?
Bài 8.3 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 152)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho \(\widehat{BAD}=\widehat{CAE}\). Kẻ BH vuông góc với AD (\(H\in AD\)). Kẻ CK vuông góc với AE (\(K\in AE\))
Chứng minh :
a) BD = CE
b) BH = CK
Bài 2 (Sách bài tập - tập 2 - trang 36)
So sánh các cạnh của tam giác ABC biết \(\widehat{A}=80^0,\widehat{C}=40^0\) ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến