1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
Bài 1)
Ta biết ĐKXĐ:
\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)
Mặt khác \(4x+1\geq 0\Rightarrow x=2\)
Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)
Xét TH \(y-1\geq 0\) và \(y-1<0\) ta thu được \(y=\frac{3}{2}\)
Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)
cho a,b,c,d >0 . cmr:
\(\frac{a}{b+2c+3d}\) +\(\frac{b}{c+2d+3a}\)+\(\frac{c}{d+2a+3b}\)+\(\frac{d}{a+2b+3c}\)\(\ge\) \(\frac{2}{3}\)
Tìm điều kiện đối với a, b để có: \(\frac{a}{b}\) =\(\frac{a+c}{b+c}\) (c khác 0)
Tìm điều kiện đối với các số hữu tỉ x,y để \(\frac{a}{b}=\frac{a+c}{b+y}\)
Bài 15 (SBT trang 109)
Viết điều kiện của mỗi bất phương trình sau :
a) \(2x-3-\dfrac{1}{x-5}< x^2-x\)
b) \(x^3\le1\)
c) \(\sqrt{x^2-x-2}< \dfrac{1}{2}\)
d) \(\sqrt[3]{x^4+x-1}+x^2-1\ge0\)
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+\dfrac{1}{x-1}\), với \(x>1\)?
Giải bất phương trình: \(\frac{3}{-2x+1}\)> \(\frac{5}{3x-2}\)
giải bất phương trình:
\(\dfrac{x+7}{5}\)+\(\dfrac{4x+5}{3}\)>0
Cho 2 số thực dương a, b thỏa mãn a+b\(\le\)1
a) B=\(\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab\)
b) C=\(\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\)
Tìm m để hai bpt\(\left(m-3\right)x+5-m>0\) và \(\left(m-3\right)x+m-2>0\) có cùng tập nghiệm.
Giải giúp em ạ
\(\sqrt{2x+1}-\sqrt{x}=\sqrt{x-3}\)
giải bất pt sau:
\(\frac{\sqrt{x^{2^{ }}-x-2}}{\sqrt{x-1}}+\sqrt{x-1}< \frac{2x+1}{\sqrt{x-1}}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến