Cho a,b,c > 0
CMR \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\) \(\ge6\)
\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)=\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)
Vì a;b;c>0 áp dụng bất đẳng thức cosi ta có:
\(\frac{a}{c}\)+\(\frac{c}{a}\)\(\ge\)2\(\sqrt{\frac{a}{c}.\frac{c}{a}}\)=2
\(\frac{b}{c}\)+\(\frac{c}{b}\)\(\ge\)2\(\sqrt{\frac{b}{c}.\frac{c}{b}}\)=2
\(\frac{b}{a}\)+\(\frac{a}{b}\)\(\ge\)2\(\sqrt{\frac{b}{a}.\frac{a}{b}}\)=2
Cộng vế với vế ta có:
\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)\(\ge\)2+2+2
=>\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)\(\ge\)6
dấu = xảy ra a=b=c
cho a,b,c>0. chứng minh rằng:
\(\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}\) +\(\sqrt{\frac{\left(b^2+ac\right)\left(a+c\right)}{b\left(a^2+c^2\right)}}\) +\(\sqrt{\frac{\left(c^2+ab\right)\left(a+b\right)}{c\left(a^2+b^2\right)}}\) \(\ge\) \(3\sqrt{2}\)
1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
cho a,b,c,d >0 . cmr:
\(\frac{a}{b+2c+3d}\) +\(\frac{b}{c+2d+3a}\)+\(\frac{c}{d+2a+3b}\)+\(\frac{d}{a+2b+3c}\)\(\ge\) \(\frac{2}{3}\)
Tìm điều kiện đối với a, b để có: \(\frac{a}{b}\) =\(\frac{a+c}{b+c}\) (c khác 0)
Tìm điều kiện đối với các số hữu tỉ x,y để \(\frac{a}{b}=\frac{a+c}{b+y}\)
Bài 15 (SBT trang 109)
Viết điều kiện của mỗi bất phương trình sau :
a) \(2x-3-\dfrac{1}{x-5}< x^2-x\)
b) \(x^3\le1\)
c) \(\sqrt{x^2-x-2}< \dfrac{1}{2}\)
d) \(\sqrt[3]{x^4+x-1}+x^2-1\ge0\)
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+\dfrac{1}{x-1}\), với \(x>1\)?
Giải bất phương trình: \(\frac{3}{-2x+1}\)> \(\frac{5}{3x-2}\)
giải bất phương trình:
\(\dfrac{x+7}{5}\)+\(\dfrac{4x+5}{3}\)>0
Cho 2 số thực dương a, b thỏa mãn a+b\(\le\)1
a) B=\(\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab\)
b) C=\(\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\)
Tìm m để hai bpt\(\left(m-3\right)x+5-m>0\) và \(\left(m-3\right)x+m-2>0\) có cùng tập nghiệm.
Giải giúp em ạ
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến