Phương pháp giải: + Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \). + Thay \(x = 1\) để tính tổng các hệ số của khai triển. Giải chi tiết:Ta có: \({\left( {3x - 4} \right)^{17}} = \sum\limits_{k = 0}^{17} {C_{17}^k{{.3}^k}.{{\left( { - 4} \right)}^{17 - k}}{x^k}} \,\,\,\left( * \right)\). Hệ số \({a_k} = \sum\limits_{k = 0}^{17} {C_{17}^k{{.3}^k}.{{\left( { - 4} \right)}^{17 - k}}.} \) Thay \(x = 1\) vào (*) ta được tổng các hệ số: \(S = {\left( {3.1 - 4} \right)^{17}} = - 1.\) Chọn A.