CMR với a,b,c là số thực dương thì :
\(a^4+b^4+c^4+abc\left(a+b+c\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\)
Áp dung BĐT schur với k=2 ta được:
a2(a-b)(a-c)+b2(b-c)(b-a)+c2(c-a)(c-b)\(\ge\)0
a4+b4+c4+abc(a+b+c)\(\ge\)ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
1/ Cho 2 số a,b thõa: a+b=2. CMR: a2+b2 \(\ge\) 2
2/ Cho 3 số a,b,c thõa: ab+bc+ca= 12. Tìm GTLN của P= a2+b2+c2
3 Cho 2 số dương a,b thỏa a+b \(\le\)2. Tìm GTNN của P= \(\dfrac{1}{a}+\dfrac{1}{b}\)
4/ Cho 3 số dương a,b,c thõa a+b+c =3 . CMR: A=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge1\)
1. Cho a,b,c >0 thỏa a2+b2+c2=3 CMR:
\(\frac{a^2b^2}{c}+\frac{b^2c^2}{a}+\frac{a^2c^2}{b}>=3\)
\(\frac{a^3b^3}{c}+\frac{b^3c^3}{a}+\frac{a^3c^3}{b}>=3abc\)
CMR: a^4+b^4+c^4>=abc(a+b+c)
tìm giá trị nhỏ nhất của hàm số y=4/x+9/(1-x) với x trong khoảng từ 0 đến 1
biết rằng 3 cạnh a, b, c thỏa \(a\le1\le b\le2\le c\le3\) tìm tam giác abc thỏa mãn đk trên và có diện tích lớn nhất.
cho tam giác abc. cmr sin3\(\frac{A}{2}\)+ sin3\(\frac{B}{2}\)+sin3\(\frac{C}{2}\) \(\ge\frac{3r}{4R}\)
chứng minh: a) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2},vớia,b,c>0\)
b) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Cho a,b,c>0 thoả mãn a2+b2+c2=1
CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
Chứng minh rằng:
\(a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3,vớia>b>0\)
Bài 1
\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\)
bài 2
Tính độ dài của các cạnh của 1 tam giác, biết chu vi tam giác là 36cm và các cạnh của tam giác tỉ lệ với các số 3;4;5
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến