a) Xét tam giác AHB và tam giác DBH có :
BH chung
AHB = HBD = 90 độ
AH=BD (gt)
-> tam giác AHB = tam giác DBH (c.g.c)
b) Vì tam giác AHB = tam giác DBH
-> BAH = HDB = 35 độ
-> HAC = BAC – BAH = 90 – 35 = 55 độ
-> ACB = 90 – HAC = 90 – 55 = 35 độ
c) Gọi DH cắt AC tại O Vì tam giác AHB = tam giác DBH
-> ABH = BHD ( 2 góc t/ứ )
Mà BHD = OHC ( đối đỉnh )
-> ABH = OHC
Và HDB = BAH = ACB ( cm câu b )
Lại có ABH + BAH = 90 độ -> OHC + ACB = 90 độ nên HOC = 90 độ
-> DH vuông góc với AC tại O