Gọi H1 đối xứng với H qua BC ⇒ p t   H H 1 : x − y = 0 ⇒ { I } = H H 1 ∩ B C \Rightarrow pt \;HH_{1}:x-y=0\Rightarrow \left \{ I \right \}=HH_{1}\cap BC ⇒ p t H H 1 : x − y = 0 ⇒ { I } = H H 1 ∩ B C
⇒ I(4; 4) ⇒ H1 (3; 3). Ta chứng minh được điểm H1 thuộc (ABC)
( A B C ) : x 2 + y 2 − 2 a x − 2 b y + c = 0 , ( a 2 + b 2 − c > 0 ) (ABC):x^{2}+y^{2}-2ax-2by+c=0,(a^{2}+b^{2}-c>0) ( A B C ) : x 2 + y 2 − 2 a x − 2 b y + c = 0 , ( a 2 + b 2 − c > 0 )
Do { M ∈ ( A B C ) N ∈ ( A B C ) H 1 ∈ ( A B C ) ⇒ { 7 2 + 3 2 − 14 a − 6 b + c = 0 4 2 + 2 2 − 8 a − 4 b + c = 0 3 2 + 3 2 − 6 a − 6 b + c = 0 ⇒ { a = 5 b = 4 c = 36 \left\{\begin{matrix} M\in (ABC)\\N \in (ABC) \\H_{1}\in (ABC) \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 7^{2}+3^{2}-14a-6b+c=0\\4^{2}+2^{2}-8a-4b+c=0 \\3^{2}+3^{2}-6a-6b+c=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=5\\b=4 \\c=36 \end{matrix}\right. ⎩ ⎨ ⎧ M ∈ ( A B C ) N ∈ ( A B C ) H 1 ∈ ( A B C ) ⇒ ⎩ ⎨ ⎧ 7 2 + 3 2 − 1 4 a − 6 b + c = 0 4 2 + 2 2 − 8 a − 4 b + c = 0 3 2 + 3 2 − 6 a − 6 b + c = 0 ⇒ ⎩ ⎨ ⎧ a = 5 b = 4 c = 3 6
⇒ ( A B C ) : x 2 + y 2 − 10 x − 8 y + 36 = 0 \Rightarrow (ABC):x^{2}+y^{2}-10x-8y+36=0 ⇒ ( A B C ) : x 2 + y 2 − 1 0 x − 8 y + 3 6 = 0
{ A } = H H 1 ∩ ( A B C ) ⇒ A ( 6 ; 6 ) , d o   A e q H 1 . \left \{ A \right \}=HH_{1}\cap (ABC)\Rightarrow A(6;6), do\; Aeq H_{1}. { A } = H H 1 ∩ ( A B C ) ⇒ A ( 6 ; 6 ) , d o A e q H 1 .
{ B , C } = B C ∩ ( A B C ) ⇒ \left \{ B,C \right \}=BC\cap (ABC)\Rightarrow { B , C } = B C ∩ ( A B C ) ⇒ tọa độ B, C là nghiệm hpt { x + y − 8 = 0 x 2 + y 2 − 10 x − 8 y + 36 = 0 \left\{\begin{matrix} x+y-8=0\\x^{2}+y^{2}-10x-8y+36=0 \end{matrix}\right. { x + y − 8 = 0 x 2 + y 2 − 1 0 x − 8 y + 3 6 = 0
⇒ [ { x = 3 y = 5   { x = 6 y = 2 ⇒ B C = 3 2 , d ( A , B C ) = ∣ 6 + 6 − 8 ∣ 2 = 2 2 \Rightarrow \Bigg \lbrack\begin{matrix} \left\{\begin{matrix} x=3\\y=5 \end{matrix}\right.\\ \;\left\{\begin{matrix} x=6\\y=2 \end{matrix}\right. \end{matrix}\Rightarrow BC=3\sqrt{2},d(A,BC)=\frac{\left | 6+6-8 \right |}{\sqrt{2}}=2\sqrt{2} ⇒ [ { x = 3 y = 5 { x = 6 y = 2 ⇒ B C = 3 2 , d ( A , B C ) = 2 ∣ 6 + 6 − 8 ∣ = 2 2
Suy ra diện tích △ A B C \triangle ABC △ A B C là S △ A B C = 1 2 . d ( A , B C ) . B C = 1 2 . 2 2 . 3 2 = 6 S_{\triangle ABC}=\frac{1}{2}.d(A,BC).BC=\frac{1}{2}.2\sqrt{2}.3\sqrt{2}=6 S △ A B C = 2 1 . d ( A , B C ) . B C = 2 1 . 2 2 . 3 2 = 6 (đvdt)